SUSurE: Speeded Up Surround Extrema feature detector and descriptor for realtime applications

M. Ebrahimi, W. Mayol-Cuevas
{"title":"SUSurE: Speeded Up Surround Extrema feature detector and descriptor for realtime applications","authors":"M. Ebrahimi, W. Mayol-Cuevas","doi":"10.1109/CVPRW.2009.5204313","DOIUrl":null,"url":null,"abstract":"There has been significant research into the development of visual feature detectors and descriptors that are robust to a number of image deformations. Some of these methods have emphasized the need to improve on computational speed and compact representations so that they can enable a range of real-time applications with reduced computational requirements. In this paper we present modified detectors and descriptors based on the recently introduced CenSurE [1], and show experimental results that aim to highlight the computational savings that can be made with limited reduction in performance. The developed methods are based on exploiting the concept of sparse sampling which may be of interest to a range of other existing approaches.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

There has been significant research into the development of visual feature detectors and descriptors that are robust to a number of image deformations. Some of these methods have emphasized the need to improve on computational speed and compact representations so that they can enable a range of real-time applications with reduced computational requirements. In this paper we present modified detectors and descriptors based on the recently introduced CenSurE [1], and show experimental results that aim to highlight the computational savings that can be made with limited reduction in performance. The developed methods are based on exploiting the concept of sparse sampling which may be of interest to a range of other existing approaches.
SUSurE:加速环绕极值特征检测器和描述符的实时应用
对于视觉特征检测器和描述符的开发已经有了重要的研究,这些特征检测器和描述符对许多图像变形都具有鲁棒性。其中一些方法强调需要提高计算速度和紧凑的表示,以便能够在减少计算需求的情况下实现一系列实时应用程序。在本文中,我们提出了基于最近引入的CenSurE[1]的改进检测器和描述符,并展示了旨在强调在有限的性能降低的情况下可以节省计算的实验结果。开发的方法是基于利用稀疏采样的概念,这可能对一系列其他现有方法感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信