Contrast enhancement of Micro Dose X-ray images

P. Irrera, I. Bloch, M. Delplanque
{"title":"Contrast enhancement of Micro Dose X-ray images","authors":"P. Irrera, I. Bloch, M. Delplanque","doi":"10.1109/ISBI.2014.6867915","DOIUrl":null,"url":null,"abstract":"A multi-scale (MS) decomposition method for contrast enhancement of Micro Dose (MD) X-ray images is presented in this paper. First, we get a denoised version of the input exploiting a non-local means filter with adaptable parameters setting that we defined in a former approach. Then, the MS representations of the input and of its de-noised version are combined to obtain an optimal image in terms of preservation of details and noise attenuation. The efficiency of the algorithm is demonstrated by quantitative and qualitative assessments on both phantoms and clinical MD images.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A multi-scale (MS) decomposition method for contrast enhancement of Micro Dose (MD) X-ray images is presented in this paper. First, we get a denoised version of the input exploiting a non-local means filter with adaptable parameters setting that we defined in a former approach. Then, the MS representations of the input and of its de-noised version are combined to obtain an optimal image in terms of preservation of details and noise attenuation. The efficiency of the algorithm is demonstrated by quantitative and qualitative assessments on both phantoms and clinical MD images.
微剂量x射线图像的对比度增强
提出了一种用于微剂量(MD) x射线图像对比度增强的多尺度分解方法。首先,我们利用我们在前一种方法中定义的具有自适应参数设置的非局部均值滤波器获得输入的去噪版本。然后,将输入的MS表示与其去噪版本相结合,以在保留细节和衰减噪声方面获得最佳图像。通过对幻影和临床MD图像的定量和定性评估,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信