Seeds Optimization for Entity Alignment in Knowledge Graph Embedding

Xiaolong Chen, Le Wang, Yunyi Tang, Weihong Han, Zhaoquan Gu
{"title":"Seeds Optimization for Entity Alignment in Knowledge Graph Embedding","authors":"Xiaolong Chen, Le Wang, Yunyi Tang, Weihong Han, Zhaoquan Gu","doi":"10.1109/DSC50466.2020.00058","DOIUrl":null,"url":null,"abstract":"The embedding-based entity alignment method usually uses pre-aligned entities as seed data, and aligns the entities in different knowledge graphs through seed entity constraints. This method relies heavily on the quality and quantity of seed entities. In this paper, we use an algorithm to optimize the selection of seed entities, and select seed entity pairs through the centrality and differentiability of entities in the knowledge graph, in order to solve the problem of insufficient number of high-quality seed entities, an iterative entity alignment method is adopted. We have done experiments on dataset DBP15K, and the experimental results show that the proposed method can achieve good entity alignment even under weak supervision.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The embedding-based entity alignment method usually uses pre-aligned entities as seed data, and aligns the entities in different knowledge graphs through seed entity constraints. This method relies heavily on the quality and quantity of seed entities. In this paper, we use an algorithm to optimize the selection of seed entities, and select seed entity pairs through the centrality and differentiability of entities in the knowledge graph, in order to solve the problem of insufficient number of high-quality seed entities, an iterative entity alignment method is adopted. We have done experiments on dataset DBP15K, and the experimental results show that the proposed method can achieve good entity alignment even under weak supervision.
知识图嵌入中实体对齐的种子优化
基于嵌入的实体对齐方法通常使用预先对齐的实体作为种子数据,通过种子实体约束对不同知识图中的实体进行对齐。这种方法在很大程度上依赖于种子实体的质量和数量。本文采用一种算法对种子实体的选择进行优化,通过知识图中实体的中心性和可微性来选择种子实体对,为解决高质量种子实体数量不足的问题,采用迭代实体对齐方法。我们在数据集DBP15K上进行了实验,实验结果表明,即使在弱监督下,该方法也能取得较好的实体对齐效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信