Sparsity in Max-Plus Algebra and Applications in Multivariate Convex Regression

Nikos Tsilivis, Anastasios Tsiamis, P. Maragos
{"title":"Sparsity in Max-Plus Algebra and Applications in Multivariate Convex Regression","authors":"Nikos Tsilivis, Anastasios Tsiamis, P. Maragos","doi":"10.1109/ICASSP39728.2021.9414139","DOIUrl":null,"url":null,"abstract":"In this paper, we study concepts of sparsity in the max-plus algebra and apply them to the problem of multivariate convex regression. We show how to efficiently find sparse (containing many −∞ elements) approximate solutions to max-plus equations by leveraging notions from submodular optimization. Subsequently, we propose a novel method for piecewise-linear surface fitting of convex multivariate functions, with optimality guarantees for the model parameters and an approximately minimum number of affine regions.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study concepts of sparsity in the max-plus algebra and apply them to the problem of multivariate convex regression. We show how to efficiently find sparse (containing many −∞ elements) approximate solutions to max-plus equations by leveraging notions from submodular optimization. Subsequently, we propose a novel method for piecewise-linear surface fitting of convex multivariate functions, with optimality guarantees for the model parameters and an approximately minimum number of affine regions.
Max-Plus代数的稀疏性及其在多元凸回归中的应用
本文研究了max-plus代数中的稀疏性概念,并将其应用于多元凸回归问题。我们展示了如何通过利用子模优化的概念有效地找到max-plus方程的稀疏(包含许多−∞元素)近似解。随后,我们提出了一种新的凸多元函数分段线性曲面拟合方法,该方法保证了模型参数的最优性和仿射区域的近似最小数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信