{"title":"Ranking in Co-effecting Multi-object/Link Types Networks","authors":"Bo Zhou, Manna Wu, Xin Xia, Chao Wu","doi":"10.1109/ICTAI.2011.84","DOIUrl":null,"url":null,"abstract":"Research on link based object ranking attracts increasing attention these years, which also brings computer science research and business marketing brand-new concepts, opportunities as well as a great deal of challenges. With prosperity of web pages search engine and widely use of social networks, recent graph-theoretic ranking approaches have achieved remarkable successes although most of them are focus on homogeneous networks studying. Previous study on co-ranking methods tries to divide heterogeneous networks into multiple homogeneous sub-networks and ties between different sub-networks. This paper proposes an efficient topic biased ranking method for bringing order to co-effecting heterogeneous networks among authors, papers and accepted institutions (journals/conferences) within one single random surfer. This new method aims to update ranks for different types of objects (author, paper, journals/conferences) at each random walk.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Research on link based object ranking attracts increasing attention these years, which also brings computer science research and business marketing brand-new concepts, opportunities as well as a great deal of challenges. With prosperity of web pages search engine and widely use of social networks, recent graph-theoretic ranking approaches have achieved remarkable successes although most of them are focus on homogeneous networks studying. Previous study on co-ranking methods tries to divide heterogeneous networks into multiple homogeneous sub-networks and ties between different sub-networks. This paper proposes an efficient topic biased ranking method for bringing order to co-effecting heterogeneous networks among authors, papers and accepted institutions (journals/conferences) within one single random surfer. This new method aims to update ranks for different types of objects (author, paper, journals/conferences) at each random walk.