Using the KDD process to support Web site reconfigurations

J. D. Velásquez, H. Yasuda, T. Aoki, R. Weber
{"title":"Using the KDD process to support Web site reconfigurations","authors":"J. D. Velásquez, H. Yasuda, T. Aoki, R. Weber","doi":"10.1109/WI.2003.1241254","DOIUrl":null,"url":null,"abstract":"The continuous improvement of a Web site's content, can be the key to attract new customers or maintain the existing ones. A way to obtain such improvement, is to study the behavior of a user while browsing in the Web. For the analysis of this behavior two variables are of particular interest: the pages visited during a user session and the time spent in each one of them. The respective Web log files contain part of this data. These files, however, can contain a huge number of registers where large part of them possibly do not contain relevant information. This is one of the reasons why finding initially unknown and useful relations in Web log registers is a complex task, which can be performed applying the process of knowledge discovery in databases (KDD). We propose a methodology for Web mining based on a data mart model. We applied this methodology analyzing log files from a certain Web site. The respective results, gave very important insights regarding visitors behavior and preferences. This knowledge has been used in the Web site's reconfiguration.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The continuous improvement of a Web site's content, can be the key to attract new customers or maintain the existing ones. A way to obtain such improvement, is to study the behavior of a user while browsing in the Web. For the analysis of this behavior two variables are of particular interest: the pages visited during a user session and the time spent in each one of them. The respective Web log files contain part of this data. These files, however, can contain a huge number of registers where large part of them possibly do not contain relevant information. This is one of the reasons why finding initially unknown and useful relations in Web log registers is a complex task, which can be performed applying the process of knowledge discovery in databases (KDD). We propose a methodology for Web mining based on a data mart model. We applied this methodology analyzing log files from a certain Web site. The respective results, gave very important insights regarding visitors behavior and preferences. This knowledge has been used in the Web site's reconfiguration.
使用KDD过程来支持网站重新配置
网站内容的持续改进可能是吸引新客户或维持现有客户的关键。获得这种改进的一种方法是研究用户在浏览Web时的行为。对于这种行为的分析,有两个变量特别重要:用户会话期间访问的页面和在每个页面上花费的时间。各自的Web日志文件包含该数据的一部分。然而,这些文件可能包含大量寄存器,其中很大一部分可能不包含相关信息。这就是为什么在Web日志寄存器中查找最初未知的和有用的关系是一项复杂的任务的原因之一,它可以应用数据库中的知识发现过程(KDD)来执行。提出了一种基于数据集市模型的Web挖掘方法。我们应用此方法分析来自某个网站的日志文件。各自的结果给出了关于访问者行为和偏好的非常重要的见解。在网站的重新配置中使用了这些知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信