Foundational, Compositional (Co)datatypes for Higher-Order Logic: Category Theory Applied to Theorem Proving

Dmitriy Traytel, A. Popescu, J. Blanchette
{"title":"Foundational, Compositional (Co)datatypes for Higher-Order Logic: Category Theory Applied to Theorem Proving","authors":"Dmitriy Traytel, A. Popescu, J. Blanchette","doi":"10.1109/LICS.2012.75","DOIUrl":null,"url":null,"abstract":"Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes. We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a bounded natural functor---an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes. We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a bounded natural functor---an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users.
高阶逻辑的基础组合(Co)数据类型:范畴论在定理证明中的应用
基于高阶逻辑(HOL)的交互定理证明通常遵循定义方法,将高级规范简化为逻辑原语。这也适用于对数据类型定义的支持。然而,HOL4、HOL Light和Isabelle/HOL中使用的内部数据类型构造基本上是非组合的,这限制了它的效率和灵活性,并且它不适合协同数据类型。我们提出了一个在HOL中构造(co)数据类型的完全模块化框架,支持混合互递归和嵌套递归。混合(co)递归支持涉及数据类型和辅助数据类型的类型定义,例如可能具有无限深度的有限分支树的类型。我们的框架很大程度上借鉴了范畴论。关键的概念是有界自然函子——一个丰富的类型构造函数,满足由有趣的范畴操作保留的特定属性。我们的想法在Isabelle中作为一个定义包实现,解决了用户的频繁请求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信