{"title":"Heat Transfer to Catalytic Surface in a Subsonic Jet of Nitrogen Plasma","authors":"A. Bryzgalov","doi":"10.33257/phchgd.23.2.992","DOIUrl":null,"url":null,"abstract":"Validation studies on the heat fluxes on water-cooled catalytic surfaces in subsonic flows of high-temperature dissociated nitrogen are presented. Simulations are performed for the conditions of experiments performed in the IGP-4 plasmatron available in IPMech RAS for four operating powers and three test materials with known catalytic recombination coefficients. The computational model describes two-dimensional flow of chemically non-equilibrium nitrogen plasma. Stefan − Maxwell equations are applied to model multicomponent diffusion in the flow and on the catalytic surface. Reasonable agreement between the calculated and measured heat fluxes is demonstrated. It is shown that deviation of the results of the computational model from the ex-perimentally determined heat fluxes is generally within 15 % (the highest deviation is 29 %). Possible reasons for the deviation are discussed, and the dependence of heat fluxes on the kinetic scheme is demonstrated.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/phchgd.23.2.992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Validation studies on the heat fluxes on water-cooled catalytic surfaces in subsonic flows of high-temperature dissociated nitrogen are presented. Simulations are performed for the conditions of experiments performed in the IGP-4 plasmatron available in IPMech RAS for four operating powers and three test materials with known catalytic recombination coefficients. The computational model describes two-dimensional flow of chemically non-equilibrium nitrogen plasma. Stefan − Maxwell equations are applied to model multicomponent diffusion in the flow and on the catalytic surface. Reasonable agreement between the calculated and measured heat fluxes is demonstrated. It is shown that deviation of the results of the computational model from the ex-perimentally determined heat fluxes is generally within 15 % (the highest deviation is 29 %). Possible reasons for the deviation are discussed, and the dependence of heat fluxes on the kinetic scheme is demonstrated.