A Novel WiFi Gesture Recognition Method Based on CNN-LSTM and Channel Attention

Yu Gu, Jiang Li
{"title":"A Novel WiFi Gesture Recognition Method Based on CNN-LSTM and Channel Attention","authors":"Yu Gu, Jiang Li","doi":"10.1145/3503047.3503148","DOIUrl":null,"url":null,"abstract":"With the rapid development of wireless sensing, intelligent human-computer interaction, and other fields, gesture recognition based on WiFi has become an important research field. Gesture recognition based on WiFi has the advantages of non-contact and privacy protection. In addition, the use of home WiFi makes the technology have a broad application scenario. At present, most gesture recognition models based on WiFi can only achieve good results in a specific domain. When changing the environment or the orientation of gesture action, the performance of the model becomes very poor. This paper proposes a gesture recognition system based on the channel attention mechanism and CNN-LSTM fusion model. On the one hand, the channel attention mechanism can consider the importance of different channel characteristics; On the other hand, the CNN-LSTM fusion model can extract richer features in the time domain and space domain. The system has achieved good classification results in multiple domains of the public data set widar3.0.","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the rapid development of wireless sensing, intelligent human-computer interaction, and other fields, gesture recognition based on WiFi has become an important research field. Gesture recognition based on WiFi has the advantages of non-contact and privacy protection. In addition, the use of home WiFi makes the technology have a broad application scenario. At present, most gesture recognition models based on WiFi can only achieve good results in a specific domain. When changing the environment or the orientation of gesture action, the performance of the model becomes very poor. This paper proposes a gesture recognition system based on the channel attention mechanism and CNN-LSTM fusion model. On the one hand, the channel attention mechanism can consider the importance of different channel characteristics; On the other hand, the CNN-LSTM fusion model can extract richer features in the time domain and space domain. The system has achieved good classification results in multiple domains of the public data set widar3.0.
一种基于CNN-LSTM和信道关注的WiFi手势识别方法
随着无线传感、智能人机交互等领域的快速发展,基于WiFi的手势识别已成为一个重要的研究领域。基于WiFi的手势识别具有非接触和隐私保护的优点。此外,家庭WiFi的使用使得该技术具有广泛的应用场景。目前,大多数基于WiFi的手势识别模型只能在特定领域取得较好的效果。当改变环境或手势动作的方向时,模型的性能会变得很差。本文提出了一种基于信道注意机制和CNN-LSTM融合模型的手势识别系统。渠道注意机制一方面可以考虑不同渠道特征的重要性;另一方面,CNN-LSTM融合模型可以在时间域和空间域提取更丰富的特征。该系统在公共数据集widar3.0的多个领域中取得了较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信