Monitoring and optimization of speed settings for Brushless Direct Current (BLDC) using Particle Swarm Optimization (PSO)

I. Anshory, I. Robandi, Wirawan
{"title":"Monitoring and optimization of speed settings for Brushless Direct Current (BLDC) using Particle Swarm Optimization (PSO)","authors":"I. Anshory, I. Robandi, Wirawan","doi":"10.1109/TENCONSPRING.2016.7519412","DOIUrl":null,"url":null,"abstract":"This paper presents the setting of the speed of a motor Brushless Direct Current (BLDC) optimized by artificial intelligence. It discusses the comparison between the speed setting of BLDC motor optimized by Particle Swarm Optimization (PSO) and without optimization. The finding shows that the performance of the BLDC motor speed setting optimized by PSO algorithm provides optimal value for the proportional gain constant of 27.0384, integral gain of 5.1108, integral derivatives of 1.9394 and smaller errors of 2,835. In short, the use of PSO algorithm can speed up the stability and reduce the errors.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents the setting of the speed of a motor Brushless Direct Current (BLDC) optimized by artificial intelligence. It discusses the comparison between the speed setting of BLDC motor optimized by Particle Swarm Optimization (PSO) and without optimization. The finding shows that the performance of the BLDC motor speed setting optimized by PSO algorithm provides optimal value for the proportional gain constant of 27.0384, integral gain of 5.1108, integral derivatives of 1.9394 and smaller errors of 2,835. In short, the use of PSO algorithm can speed up the stability and reduce the errors.
基于粒子群优化(PSO)的无刷直流(BLDC)速度设置监测与优化
提出了一种基于人工智能优化的无刷直流电机转速设置方法。讨论了采用粒子群算法优化无刷直流电动机的速度设定与不进行优化的速度设定的比较。结果表明,采用PSO算法优化的无刷直流电机调速性能最优,比例增益常数为27.0384,积分增益为5.1108,积分导数为1.9394,误差较小,为2835。总之,采用粒子群算法可以加快系统的稳定性,减小误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信