An Efficient Neural Network based on Early Compression of Sparse CT Slice Images

A-Seong Moon, Sanghyuck Lee, S. Cho, TaeGeon Lee, Hanyong Lee, Jae-Soung Lee
{"title":"An Efficient Neural Network based on Early Compression of Sparse CT Slice Images","authors":"A-Seong Moon, Sanghyuck Lee, S. Cho, TaeGeon Lee, Hanyong Lee, Jae-Soung Lee","doi":"10.1109/PlatCon53246.2021.9680749","DOIUrl":null,"url":null,"abstract":"Recently, research on diagnosing diseases through artificial intelligence has been conducted in various medical fields, including Thyroid-associated ophthalmopathy. We introduce a computationally efficient CNN architecture, which is optimized for CT images and designed especially for mobile devices with very limited computing power. The proposed architecture utilizes three operations, pointwise convolution, depth-wise separable convolution and channel shuffle, to reduce computation cost for handling a series of CT image slices for a patient. On CT images, the proposed model achieves ∼ 3.5 × actual speedup over ShuffleNet-v2 without degenerating prediction accuracy.","PeriodicalId":344742,"journal":{"name":"2021 International Conference on Platform Technology and Service (PlatCon)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Platform Technology and Service (PlatCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PlatCon53246.2021.9680749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, research on diagnosing diseases through artificial intelligence has been conducted in various medical fields, including Thyroid-associated ophthalmopathy. We introduce a computationally efficient CNN architecture, which is optimized for CT images and designed especially for mobile devices with very limited computing power. The proposed architecture utilizes three operations, pointwise convolution, depth-wise separable convolution and channel shuffle, to reduce computation cost for handling a series of CT image slices for a patient. On CT images, the proposed model achieves ∼ 3.5 × actual speedup over ShuffleNet-v2 without degenerating prediction accuracy.
基于稀疏CT切片图像早期压缩的高效神经网络
最近,通过人工智能诊断疾病的研究已经在各个医疗领域进行,包括甲状腺相关眼病。我们介绍了一种计算效率高的CNN架构,该架构针对CT图像进行了优化,并专门为计算能力非常有限的移动设备设计。该架构利用三点卷积、深度可分卷积和信道洗刷来降低处理患者一系列CT图像切片的计算成本。在CT图像上,该模型在不降低预测精度的情况下,比ShuffleNet-v2实现了~ 3.5倍的实际加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信