ANALISIS SENTIMEN MASYARAKAT TERHADAP UU CIPTA KERJA PADA MEDIA SOSIAL TWITTER

Nur Sucahyo, Ike Kurniati, Kris Harvit
{"title":"ANALISIS SENTIMEN MASYARAKAT TERHADAP UU CIPTA KERJA PADA MEDIA SOSIAL TWITTER","authors":"Nur Sucahyo, Ike Kurniati, Kris Harvit","doi":"10.56486/jris.vol2no1.167","DOIUrl":null,"url":null,"abstract":"This study aims to determine the public's response to the law on job creation which was passed on October 5, 2020. Processed based on public tweets on Twitter social media. The method used is by analyzing public sentiment in the form of positive, neutral, or negative responses on Twitter social media using the Naive Bayes Algorithm. The data was obtained by crawling on Twitter with 160 related keywords in the period April to June 2021 so that tweets related to the law on job creation were obtained. The results of the study obtained information that positive sentiment as much as 22.79%. Negative sentiment 75.77% and neutral sentiment 1.44%. With these results, negative sentiment has the highest total value","PeriodicalId":394816,"journal":{"name":"JRIS: JURNAL REKAYASA INFORMASI SWADHARMA","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JRIS: JURNAL REKAYASA INFORMASI SWADHARMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56486/jris.vol2no1.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to determine the public's response to the law on job creation which was passed on October 5, 2020. Processed based on public tweets on Twitter social media. The method used is by analyzing public sentiment in the form of positive, neutral, or negative responses on Twitter social media using the Naive Bayes Algorithm. The data was obtained by crawling on Twitter with 160 related keywords in the period April to June 2021 so that tweets related to the law on job creation were obtained. The results of the study obtained information that positive sentiment as much as 22.79%. Negative sentiment 75.77% and neutral sentiment 1.44%. With these results, negative sentiment has the highest total value
在社交媒体上对版权法的公民情绪分析
这项研究旨在确定公众对2020年10月5日通过的《创造就业机会法》的反应。根据Twitter社交媒体上的公开推文进行处理。其方法是利用朴素贝叶斯算法,分析推特(Twitter)社交媒体上的积极、中立、消极等形式的舆论。该数据是在2021年4月至6月期间通过在Twitter上爬行160个相关关键词获得的,从而获得与创造就业法相关的推文。研究结果表明,获得信息的积极情绪高达22.79%。负面情绪75.77%,中性情绪1.44%。从这些结果来看,负面情绪的总价值最高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信