Knowledge Migration Based Multi-population Cultural Algorithm

Yi-nan Guo, Yuan-yuan Cao, Yong Lin, Hui Wang
{"title":"Knowledge Migration Based Multi-population Cultural Algorithm","authors":"Yi-nan Guo, Yuan-yuan Cao, Yong Lin, Hui Wang","doi":"10.1109/ICNC.2009.597","DOIUrl":null,"url":null,"abstract":"In existing multi-population cultural algorithms, information are exchanged among sub-populations by individuals, which limits the evolution performance. So a novel multi-population cultural algorithm adopting knowledge migration is proposed. Implicit knowledge extracted from each sub-population reflects the information about dominant search space. By migrating the knowledge among sub-populations at the constant interval, the algorithm realizes more effective interaction with less communication cost. Taken benchmark functions as the examples, simulation results indicate that the algorithm can effectively improve the speed of convergence and overcome premature convergence.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In existing multi-population cultural algorithms, information are exchanged among sub-populations by individuals, which limits the evolution performance. So a novel multi-population cultural algorithm adopting knowledge migration is proposed. Implicit knowledge extracted from each sub-population reflects the information about dominant search space. By migrating the knowledge among sub-populations at the constant interval, the algorithm realizes more effective interaction with less communication cost. Taken benchmark functions as the examples, simulation results indicate that the algorithm can effectively improve the speed of convergence and overcome premature convergence.
基于知识迁移的多种群文化算法
在现有的多种群文化算法中,信息是由个体在子种群之间交换的,这限制了进化的性能。为此,提出了一种采用知识迁移的多种群文化算法。从每个子种群中提取的隐性知识反映了主导搜索空间的信息。该算法以一定的间隔在子种群之间迁移知识,以较小的通信代价实现更有效的交互。以基准函数为例,仿真结果表明,该算法能有效提高收敛速度,克服早熟收敛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信