Implementation of probabilistic automata in weightless neural networks

J. C. M. Oliveira, M. D. Souto, Teresa B Ludermir
{"title":"Implementation of probabilistic automata in weightless neural networks","authors":"J. C. M. Oliveira, M. D. Souto, Teresa B Ludermir","doi":"10.1109/SBRN.2002.1181481","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to analyze the practical viability of the theoretical results concerning the relationship between a class of weightless neural networks, known as general single-layer sequential weightless neural networks (GSSWNNs), and the probabilistic automata (PA). This study was based on the theoretical model development by de Souto (1999). This model shows the computational equivalence between the GSSWNNs and PAs. However, in order to develop a practical implementation, it is important to deal with the questioning of whether restrictions on the original theoretical results are necessary.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"2002 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this paper is to analyze the practical viability of the theoretical results concerning the relationship between a class of weightless neural networks, known as general single-layer sequential weightless neural networks (GSSWNNs), and the probabilistic automata (PA). This study was based on the theoretical model development by de Souto (1999). This model shows the computational equivalence between the GSSWNNs and PAs. However, in order to develop a practical implementation, it is important to deal with the questioning of whether restrictions on the original theoretical results are necessary.
无权重神经网络中概率自动机的实现
本文的目的是分析一类无权重神经网络,即一般单层顺序无权重神经网络(GSSWNNs)与概率自动机(PA)之间关系的理论结果的实际可行性。本研究基于de Souto(1999)的理论模型发展。该模型显示了gssswnn与pa之间的计算等效性。然而,为了发展一个实际的实施,重要的是要处理是否有必要对原始理论结果进行限制的质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信