Speech recognition using facial sEMG

Mok Win Soon, Muhammad Ikmal Hanafi Anuar, Mohamad Hafizat Zainal Abidin, Ahmad Syukri Azaman, N. Noor
{"title":"Speech recognition using facial sEMG","authors":"Mok Win Soon, Muhammad Ikmal Hanafi Anuar, Mohamad Hafizat Zainal Abidin, Ahmad Syukri Azaman, N. Noor","doi":"10.1109/ICSIPA.2017.8120569","DOIUrl":null,"url":null,"abstract":"This paper presents a study of speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. This paper compares the speech recognition system for spoken English and Malay words by a group of Malay native speakers. Feature extraction was done in both temporal and time-frequency domains. Temporal features used are integrated EMG (IEMG), mean absolute value (MAV), root mean square (RMS), variance (VAR), standard deviation (SD), and simple square integral (SSI) where time-frequency domain features were obtained using discrete wavelet transform. For classification, random forest classifier and ANNs multilayer perceptron both gave the overall best performance on using temporal features and time-frequency features respectively. The result of the classification shows that the Malay language is can be used in sEMG speech recognition.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a study of speech recognition based on electromyographic biosignals captured from the articulatory muscles in the face using surface electrodes. This paper compares the speech recognition system for spoken English and Malay words by a group of Malay native speakers. Feature extraction was done in both temporal and time-frequency domains. Temporal features used are integrated EMG (IEMG), mean absolute value (MAV), root mean square (RMS), variance (VAR), standard deviation (SD), and simple square integral (SSI) where time-frequency domain features were obtained using discrete wavelet transform. For classification, random forest classifier and ANNs multilayer perceptron both gave the overall best performance on using temporal features and time-frequency features respectively. The result of the classification shows that the Malay language is can be used in sEMG speech recognition.
基于面部肌电信号的语音识别
本文提出了一种基于面部关节肌肌电生物信号的语音识别研究。本文比较了一组马来语母语人士的英语口语和马来语语音识别系统。在时域和时频域进行特征提取。所用的时间特征是综合肌电信号(IEMG)、平均绝对值(MAV)、均方根(RMS)、方差(VAR)、标准差(SD)和简单平方积分(SSI),其中采用离散小波变换获得时频域特征。在分类方面,随机森林分类器和人工神经网络多层感知器分别在利用时间特征和时频特征方面表现最佳。分类结果表明马来语是可以用于表面肌电信号语音识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信