Statistical moments based classifier for MPSK signals

Yawpo Yang, S. Soliman
{"title":"Statistical moments based classifier for MPSK signals","authors":"Yawpo Yang, S. Soliman","doi":"10.1109/GLOCOM.1991.188358","DOIUrl":null,"url":null,"abstract":"The authors report a novel moments-based classifier to classify MPSK (M-ary phase shift keying) signals by using the moments of the phase utilizing the exact phase distribution. When compared with a case in which the Tikhonov function is used to approximate the asymptotic distribution of the phase, the new classifier with 1024 samples offered a 2 dB improvement. The 2 dB improvement is offered when the probability of misclassification is 0.01. Furthermore, improvement in performance can be obtained by increasing the length of the observation interval.<<ETX>>","PeriodicalId":343080,"journal":{"name":"IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.1991.188358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The authors report a novel moments-based classifier to classify MPSK (M-ary phase shift keying) signals by using the moments of the phase utilizing the exact phase distribution. When compared with a case in which the Tikhonov function is used to approximate the asymptotic distribution of the phase, the new classifier with 1024 samples offered a 2 dB improvement. The 2 dB improvement is offered when the probability of misclassification is 0.01. Furthermore, improvement in performance can be obtained by increasing the length of the observation interval.<>
基于统计矩的MPSK信号分类器
本文提出了一种基于矩的分型器,利用精确的相位分布,利用相位的矩对MPSK (M-ary相移键控)信号进行分类。与使用Tikhonov函数近似相位渐近分布的情况相比,具有1024个样本的新分类器提供了2db的改进。当误分类概率为0.01时,提高了2 dB。此外,可以通过增加观测间隔的长度来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信