HSE at TempoWiC: Detecting Meaning Shift in Social Media with Diachronic Language Models

Elizaveta Tukhtina, Kseniia Kashleva, Svetlana Vydrina
{"title":"HSE at TempoWiC: Detecting Meaning Shift in Social Media with Diachronic Language Models","authors":"Elizaveta Tukhtina, Kseniia Kashleva, Svetlana Vydrina","doi":"10.18653/v1/2022.evonlp-1.6","DOIUrl":null,"url":null,"abstract":"This paper describes our methods for temporal meaning shift detection, implemented during the TempoWiC shared task. We present two systems: with and without time span data usage. Our approaches are based on the language models fine-tuned for Twitter domain. Both systems outperformed all the competition’s baselines except TimeLMs-SIM. Our best submission achieved the macro-F1 score of 70.09% and took the 7th place. This result was achieved by using diachronic language models from the TimeLMs project.","PeriodicalId":158578,"journal":{"name":"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.evonlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes our methods for temporal meaning shift detection, implemented during the TempoWiC shared task. We present two systems: with and without time span data usage. Our approaches are based on the language models fine-tuned for Twitter domain. Both systems outperformed all the competition’s baselines except TimeLMs-SIM. Our best submission achieved the macro-F1 score of 70.09% and took the 7th place. This result was achieved by using diachronic language models from the TimeLMs project.
HSE在TempoWiC:用历时语言模型检测社交媒体的意义转移
本文描述了我们在tempoic共享任务中实现的时间意义偏移检测方法。我们提出了两个系统:有和没有时间跨度的数据使用。我们的方法基于针对Twitter领域进行微调的语言模型。除了TimeLMs-SIM之外,这两个系统都超过了所有竞争对手的基准。我们最好的投稿获得了70.09%的macro-F1分数,获得了第7名。这个结果是通过使用来自TimeLMs项目的历时语言模型实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信