Wennan He, Ben Swift, H. Gardner, Mingze Xi, Matt Adcock
{"title":"Reducing Latency in a Collaborative Augmented Reality Service","authors":"Wennan He, Ben Swift, H. Gardner, Mingze Xi, Matt Adcock","doi":"10.1145/3359997.3365699","DOIUrl":null,"url":null,"abstract":"We show how inter-device location tracking latency can be reduced in an Augmented Reality (AR) service that uses Microsoft’s HoloLens (HL) devices for multi-user collaboration. Specifically, we have built a collaborative AR system for a research greenhouse that allows multiple users to be able to work collaboratively to process and record information about individual plants in the greenhouse. In this system, we have combined the HL “world tracking” functionality together with marker-based tracking to develop a one-for-all-shared-experience (OFALL-SE) dynamic object localization service. We compare this OFALL-SE service with the traditional Local Anchor Transfer (LAT) method for managing shared experiences and show that latency of data transmission throughout the server and users can be dramatically reduced. Our results indicate that OFALL-SE can support near-real-time collaboration when sharing the physical locations of the plants among users in a greenhouse.","PeriodicalId":448139,"journal":{"name":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359997.3365699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We show how inter-device location tracking latency can be reduced in an Augmented Reality (AR) service that uses Microsoft’s HoloLens (HL) devices for multi-user collaboration. Specifically, we have built a collaborative AR system for a research greenhouse that allows multiple users to be able to work collaboratively to process and record information about individual plants in the greenhouse. In this system, we have combined the HL “world tracking” functionality together with marker-based tracking to develop a one-for-all-shared-experience (OFALL-SE) dynamic object localization service. We compare this OFALL-SE service with the traditional Local Anchor Transfer (LAT) method for managing shared experiences and show that latency of data transmission throughout the server and users can be dramatically reduced. Our results indicate that OFALL-SE can support near-real-time collaboration when sharing the physical locations of the plants among users in a greenhouse.