An Image Registration Model in Electron Backscatter Diffraction

M. Graf, Sebastian Neumayer, R. Hielscher, G. Steidl, M. Liesegang, T. Beck
{"title":"An Image Registration Model in Electron Backscatter Diffraction","authors":"M. Graf, Sebastian Neumayer, R. Hielscher, G. Steidl, M. Liesegang, T. Beck","doi":"10.1137/21m1426353","DOIUrl":null,"url":null,"abstract":"Variational methods were successfully applied for registration of gray and RGB-valued image sequences. A common assumption in these models is that pixel-values do not change under transformations. Nowadays, modern image acquisition techniques such as electron backscatter tomography (EBSD), which is used in material sciences, can capture images with values in nonlinear spaces. Here, the image values belong to the quotient space SO(3)/S of the special orthogonal group modulo the discrete symmetry group of the crystal. For such data, the assumption that pixel-values remain unchanged under transformations appears to be no longer valid. Hence, we propose a variational model for the registration of SO(3)/S-valued image sequences, taking the dependence of pixel-values on the transformation into account. More precisely, the data is transformed according to the rotation part in the polar decomposition of the Jacobian of the transformation. To model non-smooth transformations without obtaining so-called staircasing effects, we propose to use a total generalized variation like prior. Then, we prove existence of a minimizer for our model and explain how it can be discretized and minimized by a primal-dual algorithm. Numerical examples illustrate the performance of our method.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1426353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Variational methods were successfully applied for registration of gray and RGB-valued image sequences. A common assumption in these models is that pixel-values do not change under transformations. Nowadays, modern image acquisition techniques such as electron backscatter tomography (EBSD), which is used in material sciences, can capture images with values in nonlinear spaces. Here, the image values belong to the quotient space SO(3)/S of the special orthogonal group modulo the discrete symmetry group of the crystal. For such data, the assumption that pixel-values remain unchanged under transformations appears to be no longer valid. Hence, we propose a variational model for the registration of SO(3)/S-valued image sequences, taking the dependence of pixel-values on the transformation into account. More precisely, the data is transformed according to the rotation part in the polar decomposition of the Jacobian of the transformation. To model non-smooth transformations without obtaining so-called staircasing effects, we propose to use a total generalized variation like prior. Then, we prove existence of a minimizer for our model and explain how it can be discretized and minimized by a primal-dual algorithm. Numerical examples illustrate the performance of our method.
电子后向散射衍射中的图像配准模型
将变分方法成功应用于灰度值和rgb值图像序列的配准。这些模型中的一个常见假设是像素值在转换过程中不会改变。如今,现代图像采集技术,如用于材料科学的电子背散射断层扫描(EBSD),可以捕获具有非线性空间值的图像。在这里,图像值属于特殊正交群模晶体离散对称群的商空间SO(3)/S。对于这样的数据,像素值在转换下保持不变的假设似乎不再有效。因此,考虑到像素值对变换的依赖性,我们提出了一种用于SO(3)/ s值图像序列配准的变分模型。更精确地说,根据变换的雅可比矩阵极坐标分解中的旋转部分对数据进行变换。为了在不获得所谓阶梯效应的情况下对非光滑变换进行建模,我们建议使用像先验一样的总广义变分。然后,我们证明了模型的最小化器的存在性,并解释了如何用原始对偶算法对模型进行离散化和最小化。数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信