A Feature-based Approach on Contact-less Blood Pressure Estimation from Video Data

Carolin Wuerich, Eva-Maria Humm, C. Wiede, Gregor Schiele
{"title":"A Feature-based Approach on Contact-less Blood Pressure Estimation from Video Data","authors":"Carolin Wuerich, Eva-Maria Humm, C. Wiede, Gregor Schiele","doi":"10.23919/eusipco55093.2022.9909563","DOIUrl":null,"url":null,"abstract":"Conventional blood pressure monitors and sensors have several limitations in terms of accuracy, measurement time, comfort or safety. To address these limitations, we realized and tested a surrogate-based contact-less blood pressure estimation method which relies on a single remote photoplethysmogram (rPPG) captured by camera. From this rPPG signal, we compute 120 features, and perform a sequential forward feature selection to obtain the best subset of features. With a multilayer perceptron model, we obtain a mean absolute error ± standard deviation of MAE $5.50\\pm 4.52$ mmHg for systolic pressure and $3.73\\pm 2.86$ mmHg for diastolic pressure. In contrast to previous studies, our model is trained and tested on a data set including normotensive, pre-hypertensive and hypertensive values.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Conventional blood pressure monitors and sensors have several limitations in terms of accuracy, measurement time, comfort or safety. To address these limitations, we realized and tested a surrogate-based contact-less blood pressure estimation method which relies on a single remote photoplethysmogram (rPPG) captured by camera. From this rPPG signal, we compute 120 features, and perform a sequential forward feature selection to obtain the best subset of features. With a multilayer perceptron model, we obtain a mean absolute error ± standard deviation of MAE $5.50\pm 4.52$ mmHg for systolic pressure and $3.73\pm 2.86$ mmHg for diastolic pressure. In contrast to previous studies, our model is trained and tested on a data set including normotensive, pre-hypertensive and hypertensive values.
基于特征的视频数据非接触式血压估计方法
传统的血压监测器和传感器在准确性、测量时间、舒适性或安全性方面存在一些限制。为了解决这些限制,我们实现并测试了一种基于代理的非接触式血压估计方法,该方法依赖于相机捕获的单个远程光电容积图(rPPG)。从该rPPG信号中,我们计算了120个特征,并进行了顺序前向特征选择以获得最佳特征子集。通过多层感知器模型,我们得到收缩压的平均绝对误差±标准差为5.50美元\pm 4.52美元mmHg,舒张压的平均绝对误差为3.73美元\pm 2.86美元mmHg。与之前的研究相反,我们的模型是在包括血压正常值、高血压前期值和高血压值的数据集上进行训练和测试的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信