Capture Steps: Robust Walking for Humanoid Robots

M. Missura, Maren Bennewitz, Sven Behnke
{"title":"Capture Steps: Robust Walking for Humanoid Robots","authors":"M. Missura, Maren Bennewitz, Sven Behnke","doi":"10.1142/S0219843619500324","DOIUrl":null,"url":null,"abstract":"Stable bipedal walking is a key prerequisite for humanoid robots to reach their potential of being versatile helpers in our everyday environments. Bipedal walking is, however, a complex motion that requires the coordination of many degrees of freedom while it is also inherently unstable and sensitive to disturbances. The balance of a walking biped has to be constantly maintained. The most effective ways of controlling balance are well timed and placed recovery steps — capture steps — that absorb the expense momentum gained from a push or a stumble. We present a bipedal gait generation framework that utilizes step timing and foot placement techniques in order to recover the balance of a biped even after strong disturbances. Our framework modifies the next footstep location instantly when responding to a disturbance and generates controllable omnidirectional walking using only very little sensing and computational power. We exploit the open-loop stability of a central pattern generated gait to fit a linear inverted pendulum model (LIPM) to the observed center of mass (CoM) trajectory. Then, we use the fitted model to predict suitable footstep locations and timings in order to maintain balance while following a target walking velocity. Our experiments show qualitative and statistical evidence of one of the strongest push-recovery capabilities among humanoid robots to date.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219843619500324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Stable bipedal walking is a key prerequisite for humanoid robots to reach their potential of being versatile helpers in our everyday environments. Bipedal walking is, however, a complex motion that requires the coordination of many degrees of freedom while it is also inherently unstable and sensitive to disturbances. The balance of a walking biped has to be constantly maintained. The most effective ways of controlling balance are well timed and placed recovery steps — capture steps — that absorb the expense momentum gained from a push or a stumble. We present a bipedal gait generation framework that utilizes step timing and foot placement techniques in order to recover the balance of a biped even after strong disturbances. Our framework modifies the next footstep location instantly when responding to a disturbance and generates controllable omnidirectional walking using only very little sensing and computational power. We exploit the open-loop stability of a central pattern generated gait to fit a linear inverted pendulum model (LIPM) to the observed center of mass (CoM) trajectory. Then, we use the fitted model to predict suitable footstep locations and timings in order to maintain balance while following a target walking velocity. Our experiments show qualitative and statistical evidence of one of the strongest push-recovery capabilities among humanoid robots to date.
捕获步骤:人形机器人的稳健行走
稳定的双足行走是人形机器人在我们的日常环境中发挥多功能助手潜力的关键先决条件。然而,双足行走是一项复杂的运动,需要多个自由度的协调,同时它本身也不稳定,对干扰很敏感。行走的两足动物必须不断地保持平衡。控制平衡最有效的方法是把握好时间和位置的恢复步骤——捕捉步骤——以吸收因推动或绊倒而获得的费用动量。我们提出了一种双足步态生成框架,该框架利用步进定时和足部放置技术,以便在强烈干扰后恢复双足动物的平衡。我们的框架在响应干扰时立即修改下一个脚步位置,并仅使用很少的传感和计算能力产生可控的全向行走。我们利用中心模式生成的步态的开环稳定性来拟合线性倒立摆模型(LIPM)与观察到的质心(CoM)轨迹。然后,我们使用拟合的模型来预测合适的脚步位置和时间,以便在遵循目标步行速度的同时保持平衡。我们的实验显示了迄今为止人形机器人中最强的推恢复能力之一的定性和统计证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信