Analysis of C-shaped Compact Microstrip Antennas using Deep Neural Networks optimized by Manta Ray Foraging Optimization with Lévy-Flight Mechanism

M. Bicer
{"title":"Analysis of C-shaped Compact Microstrip Antennas using Deep Neural Networks optimized by Manta Ray Foraging Optimization with Lévy-Flight Mechanism","authors":"M. Bicer","doi":"10.35377/SAUCIS.04.02.903208","DOIUrl":null,"url":null,"abstract":"In recent years, microstrip antennas have become a popular research subject with the increasing use of mobile technologies. With the development of neural networks, the design and analysis of microstrip antennas are carried out quickly with high accuracy. However, optimizing the weight matrices and bias vectors of deep neural learning models is an important challenge for engineering problems. This study presents a deep neural network-based (DNN-based) neural model to estimate the gain and scattering parameter (S11) of C-shaped compact microstrip antennas (CCMAs). For this purpose, the S11 and gain values of 324 CCMAs with different physical and electrical properties were obtained using full-wave electromagnetic simulation software based on the finite integration technique (FIT). The data related to 324 CCMAs were used for the training and testing process. The improved manta ray foraging optimization (MRFO) algorithm based on the Lévy-flight (LF) mechanism was used to optimize the connection weights matrices and bias vectors. The MRFO-optimized model has estimation success for training and testing data as 0.925 and 0.922, in terms of R2 score, respectively. The estimated resonant frequencies using the trained model are compared with the studies in the literature, and an average percentage error (APE) of 0.933% is obtained.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/SAUCIS.04.02.903208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, microstrip antennas have become a popular research subject with the increasing use of mobile technologies. With the development of neural networks, the design and analysis of microstrip antennas are carried out quickly with high accuracy. However, optimizing the weight matrices and bias vectors of deep neural learning models is an important challenge for engineering problems. This study presents a deep neural network-based (DNN-based) neural model to estimate the gain and scattering parameter (S11) of C-shaped compact microstrip antennas (CCMAs). For this purpose, the S11 and gain values of 324 CCMAs with different physical and electrical properties were obtained using full-wave electromagnetic simulation software based on the finite integration technique (FIT). The data related to 324 CCMAs were used for the training and testing process. The improved manta ray foraging optimization (MRFO) algorithm based on the Lévy-flight (LF) mechanism was used to optimize the connection weights matrices and bias vectors. The MRFO-optimized model has estimation success for training and testing data as 0.925 and 0.922, in terms of R2 score, respectively. The estimated resonant frequencies using the trained model are compared with the studies in the literature, and an average percentage error (APE) of 0.933% is obtained.
基于lsamv - flight机制的蝠鲼觅食优化的c型微带天线深度神经网络分析
近年来,随着移动技术的日益普及,微带天线已成为一个热门的研究课题。随着神经网络的发展,微带天线的设计和分析可以快速、高精度地进行。然而,优化深度神经学习模型的权重矩阵和偏置向量是一个重要的工程问题。本文提出了一种基于深度神经网络(DNN-based)的神经网络模型来估计c形紧凑型微带天线(ccma)的增益和散射参数(S11)。为此,利用基于有限积分技术(FIT)的全波电磁仿真软件,获得了324个具有不同物理和电学性能的ccma的S11和增益值。与324个ccma相关的数据用于培训和测试过程。采用改进的蝠鲼觅食优化算法(MRFO)对连接权矩阵和偏置向量进行了优化。优化后的mrfo模型对训练数据和测试数据的估计成功率R2得分分别为0.925和0.922。将训练好的模型估计的共振频率与文献研究进行比较,得到平均百分比误差(APE)为0.933%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信