Minimizing error and VLSI complexity in the multiplication free approximation of arithmetic coding

G. Feygin, P. Gulak, P. Chow
{"title":"Minimizing error and VLSI complexity in the multiplication free approximation of arithmetic coding","authors":"G. Feygin, P. Gulak, P. Chow","doi":"10.1109/DCC.1993.253138","DOIUrl":null,"url":null,"abstract":"Two new algorithms for performing arithmetic coding without multiplication are presented. The first algorithm, suitable for an alphabet of arbitrary size, reduces the worst-case normalized excess length to under 0.8% versus 1.911% for the previously known best method of Chevion et al. The second algorithm, suitable only for alphabets of less than twelve symbols, allows even greater reduction in the excess code length. For the important binary alphabet the worst-case excess code length is reduced to less than 0.1% versus 1.1% for the method of Chevion et al. The implementation requirements of the proposed new algorithms are discussed and shown to be similar.<<ETX>>","PeriodicalId":315077,"journal":{"name":"[Proceedings] DCC `93: Data Compression Conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] DCC `93: Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1993.253138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Two new algorithms for performing arithmetic coding without multiplication are presented. The first algorithm, suitable for an alphabet of arbitrary size, reduces the worst-case normalized excess length to under 0.8% versus 1.911% for the previously known best method of Chevion et al. The second algorithm, suitable only for alphabets of less than twelve symbols, allows even greater reduction in the excess code length. For the important binary alphabet the worst-case excess code length is reduced to less than 0.1% versus 1.1% for the method of Chevion et al. The implementation requirements of the proposed new algorithms are discussed and shown to be similar.<>
在算术编码的无乘法近似中最小化误差和VLSI复杂度
提出了两种不用乘法进行算术编码的新算法。第一种算法适用于任意大小的字母表,将最坏情况归一化多余长度减少到0.8%以下,而之前已知的Chevion等人的最佳方法为1.911%。第二种算法只适用于少于12个符号的字母,可以更大幅度地减少多余的代码长度。对于重要的二进制字母表,最坏情况下的超额代码长度减少到小于0.1%,而Chevion等人的方法减少到1.1%。讨论了提出的新算法的实现要求,并证明了它们是相似的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信