{"title":"Frequency-domain stability analysis of retrospective-cost adaptive control for systems with unknown nonminimum-phase zeros","authors":"A. D'Amato, E. D. Sumer, Dennis S. Bernstein","doi":"10.1109/CDC.2011.6160977","DOIUrl":null,"url":null,"abstract":"We develop a multi-input, multi-output direct adaptive controller for discrete-time, possibly nonminimum-phase, systems with unknown nonminimum-phase zeros. The adaptive controller requires limited modeling information about the system, specifically, Markov parameters from the control input to the performance variables. Often, only a single Markov parameter is required, even in the nonminimum-phase case. We analysis the stability of the algorithm using a time-and-frequency-domain approach. We demonstrate the algorithm on disturbance-rejection problems, where the disturbance spectra are unknown. This controller is based on a retrospective performance objective, where the controller is updated using either batch or recursive least squares.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We develop a multi-input, multi-output direct adaptive controller for discrete-time, possibly nonminimum-phase, systems with unknown nonminimum-phase zeros. The adaptive controller requires limited modeling information about the system, specifically, Markov parameters from the control input to the performance variables. Often, only a single Markov parameter is required, even in the nonminimum-phase case. We analysis the stability of the algorithm using a time-and-frequency-domain approach. We demonstrate the algorithm on disturbance-rejection problems, where the disturbance spectra are unknown. This controller is based on a retrospective performance objective, where the controller is updated using either batch or recursive least squares.