A general kernel boosting framework integrating pathways for predictive modeling based on genomic data

Li Zeng, Zhaolong Yu, Yiliang Zhang, Hongyu Zhao
{"title":"A general kernel boosting framework integrating pathways for predictive modeling based on genomic data","authors":"Li Zeng, Zhaolong Yu, Yiliang Zhang, Hongyu Zhao","doi":"10.1145/3535508.3545526","DOIUrl":null,"url":null,"abstract":"In this article, we extend a general framework, Pathway-based Kernel Boosting (PKB), which incorporates clinical information and prior knowledge about pathways for prediction of binary, continuous and survival outcomes. We introduce appropriate loss functions and optimization procedures for different outcome types. Our prediction algorithm incorporates pathway knowledge by constructing kernel function spaces from the pathways and use them as base learners in the boosting procedure. Through extensive simulations and case studies in drug response and cancer survival datasets, we demonstrate that PKB can substantially outperform other competing methods, better identify biological pathways related to drug response and patient survival, and provide novel insights into cancer pathogenesis and treatment response.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we extend a general framework, Pathway-based Kernel Boosting (PKB), which incorporates clinical information and prior knowledge about pathways for prediction of binary, continuous and survival outcomes. We introduce appropriate loss functions and optimization procedures for different outcome types. Our prediction algorithm incorporates pathway knowledge by constructing kernel function spaces from the pathways and use them as base learners in the boosting procedure. Through extensive simulations and case studies in drug response and cancer survival datasets, we demonstrate that PKB can substantially outperform other competing methods, better identify biological pathways related to drug response and patient survival, and provide novel insights into cancer pathogenesis and treatment response.
基于基因组数据的预测建模路径集成的通用核增强框架
在本文中,我们扩展了一个通用的框架,即基于通路的核增强(PKB),它结合了临床信息和关于预测二进制、连续和生存结果的通路的先验知识。我们针对不同的结果类型引入了适当的损失函数和优化程序。我们的预测算法通过从路径中构造核函数空间来结合路径知识,并将其用作增强过程中的基础学习器。通过对药物反应和癌症生存数据集的广泛模拟和案例研究,我们证明PKB可以大大优于其他竞争方法,更好地识别与药物反应和患者生存相关的生物学途径,并为癌症发病机制和治疗反应提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信