A Novel Cross Grouping CG MLP based on local mechanism

Hang Xu, Tao Wang, Wei Wen, Xingyu Liu
{"title":"A Novel Cross Grouping CG MLP based on local mechanism","authors":"Hang Xu, Tao Wang, Wei Wen, Xingyu Liu","doi":"10.1109/CMVIT57620.2023.00021","DOIUrl":null,"url":null,"abstract":"Recently, Google proposed the MLP-Mixer – a simple multi-layer fully connected network, proving that convolutional and attention mechanisms are not irreplaceable. Although MLP-Mixer is simple, training it requires a lot of resources. In this paper, a network model——Cross Grouping MLP(CG MLP) based on local mechanism is proposed. The CG MLP module is a general visual task backbone that replaces the original MLP’s spatial mixing module. CG MLP introduces vertical and horizontal bar grouping in different channels of feature map to extract local information. CG MLP also introduces pyramid structure. For the input image, this model reduces the computational complexity of MLP from the square of the area(the fourth power of the side length) to the third power of the side length. CG MLP with 64M parameters achieved 82.5% accuracy on Imagenet-1K, and it reaches the SOTA performance of MLP models.","PeriodicalId":191655,"journal":{"name":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMVIT57620.2023.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Google proposed the MLP-Mixer – a simple multi-layer fully connected network, proving that convolutional and attention mechanisms are not irreplaceable. Although MLP-Mixer is simple, training it requires a lot of resources. In this paper, a network model——Cross Grouping MLP(CG MLP) based on local mechanism is proposed. The CG MLP module is a general visual task backbone that replaces the original MLP’s spatial mixing module. CG MLP introduces vertical and horizontal bar grouping in different channels of feature map to extract local information. CG MLP also introduces pyramid structure. For the input image, this model reduces the computational complexity of MLP from the square of the area(the fourth power of the side length) to the third power of the side length. CG MLP with 64M parameters achieved 82.5% accuracy on Imagenet-1K, and it reaches the SOTA performance of MLP models.
一种新的基于局部机制的交叉分组CG MLP
最近,谷歌提出了MLP-Mixer——一个简单的多层全连接网络,证明了卷积和注意机制并不是不可替代的。虽然MLP-Mixer很简单,但是训练它需要大量的资源。本文提出了一种基于局部机制的网络模型——交叉分组MLP(CG MLP)。CG MLP模块是一个通用的视觉任务主干,它取代了原始MLP的空间混合模块。CG MLP在特征图的不同通道中引入垂直和水平条分组,提取局部信息。CG MLP也引入了金字塔结构。对于输入图像,该模型将MLP的计算复杂度从面积的平方(边长的四次方)降低到边长的三次方。具有64M个参数的CG MLP在Imagenet-1K上达到了82.5%的准确率,达到了MLP模型的SOTA性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信