An incremental Bayesian network structure learning algorithm based on local updating strategy

Dan Liu, Jie Wu, Lin Liang, Xiaowan Li, Chunguang Luo, Guanghua Xu
{"title":"An incremental Bayesian network structure learning algorithm based on local updating strategy","authors":"Dan Liu, Jie Wu, Lin Liang, Xiaowan Li, Chunguang Luo, Guanghua Xu","doi":"10.1109/IAEAC47372.2019.8997724","DOIUrl":null,"url":null,"abstract":"Bayesian network is wildly applied in AI field, but current structure learning algorithms consume a significant amount of time when faced with big data. We propose an incremental algorithm based on local updating strategy. First, we adopted a balanced decomposition for the structure, found the sub-network needed to be updated, and updated it to obtain the new network. Then we did simulation experiments to verify the validity of our method. Finally, we compared the efficiency and accuracy of our method with that of other mainstream algorithms. The result shows that our method runs in a low constant time, and its average accuracy of structure learning reaches 98%.","PeriodicalId":164163,"journal":{"name":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC47372.2019.8997724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian network is wildly applied in AI field, but current structure learning algorithms consume a significant amount of time when faced with big data. We propose an incremental algorithm based on local updating strategy. First, we adopted a balanced decomposition for the structure, found the sub-network needed to be updated, and updated it to obtain the new network. Then we did simulation experiments to verify the validity of our method. Finally, we compared the efficiency and accuracy of our method with that of other mainstream algorithms. The result shows that our method runs in a low constant time, and its average accuracy of structure learning reaches 98%.
一种基于局部更新策略的增量贝叶斯网络结构学习算法
贝叶斯网络在人工智能领域得到了广泛的应用,但目前的结构学习算法在面对大数据时耗费了大量的时间。提出了一种基于局部更新策略的增量算法。首先,我们对结构进行平衡分解,找到需要更新的子网,并对其进行更新,得到新的网络。通过仿真实验验证了该方法的有效性。最后,将本文方法的效率和精度与其他主流算法进行了比较。结果表明,该方法在较低的常数时间内运行,结构学习的平均准确率达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信