Polygones fondamentaux d’une courbe modulaire

K. Belabas, D. Bernardi, B. Perrin-Riou
{"title":"Polygones fondamentaux d’une courbe modulaire","authors":"K. Belabas, D. Bernardi, B. Perrin-Riou","doi":"10.5802/PMB.40","DOIUrl":null,"url":null,"abstract":"A few pages in Siegel describe how, starting with a fundamental polygon for a compact Riemann surface, one can construct a symplectic basis of its homology. This note retells that construction, specializing to the case where the surface is associated to a congruence subgroup $\\Gamma$ of $SL_2(Z)$. One then obtains by classical procedures a generating system for $\\Gamma$ with a minimal number of hyperbolic elements and a presentation of the $Z[\\Gamma]$-module $Z[P^1(Q)]_0$.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications Mathématiques de Besançon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/PMB.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A few pages in Siegel describe how, starting with a fundamental polygon for a compact Riemann surface, one can construct a symplectic basis of its homology. This note retells that construction, specializing to the case where the surface is associated to a congruence subgroup $\Gamma$ of $SL_2(Z)$. One then obtains by classical procedures a generating system for $\Gamma$ with a minimal number of hyperbolic elements and a presentation of the $Z[\Gamma]$-module $Z[P^1(Q)]_0$.
模曲线的基本多边形
西格尔用几页的篇幅描述了如何从紧致黎曼曲面的基本多边形开始,构造其同调的辛基。本文重述该构造,专门讨论曲面与$SL_2(Z)$的同余子群$\Gamma$相关联的情况。然后用经典方法得到了具有最小双曲元数的$\Gamma$的生成系统,并给出了$Z[\Gamma]$-模$Z[P^1(Q)]_0$的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信