{"title":"Formal Verification and Simulation: Co-verification for Subway Control Systems","authors":"Huixing Fang, Jian Guo, Huibiao Zhu, Jianqi Shi","doi":"10.1109/TASE.2012.11","DOIUrl":null,"url":null,"abstract":"For hybrid systems, hybrid automata based tools are capable of verification while Matlab Simulink/Stateflow is proficient in simulation. In this paper, a methodology is developed in which the formal verification tool PHAVer and simulation tool Matlab are integrated to analyze and verify hybrid systems. For application of this methodology, a Platform Screen Doors System (abbreviated as PSDS), a subsystem of the subway, is modeled with formal verification techniques based on hybrid automata and Matlab Simulink/Stateflow charts, respectively. The models of PSDS are simulated by Matlab and verified by PHAVer. It is verified that the sandwich situation can be avoided under time interval conditions. We conclude that this integration methodology is competent in verifying Platform Screen Doors System.","PeriodicalId":417979,"journal":{"name":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","volume":"1994 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2012.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For hybrid systems, hybrid automata based tools are capable of verification while Matlab Simulink/Stateflow is proficient in simulation. In this paper, a methodology is developed in which the formal verification tool PHAVer and simulation tool Matlab are integrated to analyze and verify hybrid systems. For application of this methodology, a Platform Screen Doors System (abbreviated as PSDS), a subsystem of the subway, is modeled with formal verification techniques based on hybrid automata and Matlab Simulink/Stateflow charts, respectively. The models of PSDS are simulated by Matlab and verified by PHAVer. It is verified that the sandwich situation can be avoided under time interval conditions. We conclude that this integration methodology is competent in verifying Platform Screen Doors System.