Information-Theoretically Secure Multi-Party Linear Regression and Logistic Regression

Hengcheng Zhou
{"title":"Information-Theoretically Secure Multi-Party Linear Regression and Logistic Regression","authors":"Hengcheng Zhou","doi":"10.1109/CCGridW59191.2023.00042","DOIUrl":null,"url":null,"abstract":"When the data used in linear regression and logistic regression come from multiple participants, due to the requirements for data privacy, data holders need to complete calculation with other participants without exposing any information about their private data. In this paper, we present new protocols for privacy-preserving linear regression and logistic regression training based on Shamir’s secret sharing scheme. Our protocols can protect users from semi-honest and malicious adversaries with information-theoretic security. Additionally, the number of participants in our protocols can be flexibly modified to suit a variety of real-world application circumstances. We conduct experiments in settings with varying numbers of participants, and the results demonstrate that our protocols can successfully carry out the task of training for linear regression and logistic regression while providing the advantages of high security and flexibility.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the data used in linear regression and logistic regression come from multiple participants, due to the requirements for data privacy, data holders need to complete calculation with other participants without exposing any information about their private data. In this paper, we present new protocols for privacy-preserving linear regression and logistic regression training based on Shamir’s secret sharing scheme. Our protocols can protect users from semi-honest and malicious adversaries with information-theoretic security. Additionally, the number of participants in our protocols can be flexibly modified to suit a variety of real-world application circumstances. We conduct experiments in settings with varying numbers of participants, and the results demonstrate that our protocols can successfully carry out the task of training for linear regression and logistic regression while providing the advantages of high security and flexibility.
信息理论安全的多方线性回归与逻辑回归
当线性回归和逻辑回归中使用的数据来自多个参与者时,由于对数据隐私的要求,数据持有者需要与其他参与者一起完成计算,而不暴露任何关于其私人数据的信息。本文提出了一种基于Shamir秘密共享方案的隐私保护线性回归和逻辑回归训练新协议。我们的协议可以保护用户免受半诚实和恶意的攻击,具有信息理论的安全性。此外,我们协议中的参与者数量可以灵活修改,以适应各种现实世界的应用环境。我们在不同参与者数量的环境下进行了实验,结果表明我们的协议可以成功地完成线性回归和逻辑回归的训练任务,同时具有高安全性和灵活性的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信