Cálculo da Solução Explícita de Controladores MPC por Modelo Takagi-Sugeno Modificado

Teófilo Paiva Guimarães Mendes, M. Martins, Leizer Schnitman
{"title":"Cálculo da Solução Explícita de Controladores MPC por Modelo Takagi-Sugeno Modificado","authors":"Teófilo Paiva Guimarães Mendes, M. Martins, Leizer Schnitman","doi":"10.17648/sbai-2019-111267","DOIUrl":null,"url":null,"abstract":": Multi-parameter quadratic programming is a technique applied to compute optimization solution inherent to Model Predictive Control (MPC) strategies. The present work proposes a modified Takagi-Sugeno model to compute explicit solution, formed by the polyhedral critical regions and their respective affine functions. Advantages of this technique are: (i) capacity to complexity reduction e parallel processing, (ii) dismiss of model's training phase from numerical data; and (iii) synthesis of a single analytical expression for the associated MPC control law. A case study shows that this new method has potential to be more efficient than classical explicit MPC optimization techniques with respect to numbers of parameters and processing time","PeriodicalId":130927,"journal":{"name":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/sbai-2019-111267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Multi-parameter quadratic programming is a technique applied to compute optimization solution inherent to Model Predictive Control (MPC) strategies. The present work proposes a modified Takagi-Sugeno model to compute explicit solution, formed by the polyhedral critical regions and their respective affine functions. Advantages of this technique are: (i) capacity to complexity reduction e parallel processing, (ii) dismiss of model's training phase from numerical data; and (iii) synthesis of a single analytical expression for the associated MPC control law. A case study shows that this new method has potential to be more efficient than classical explicit MPC optimization techniques with respect to numbers of parameters and processing time
用改进的Takagi-Sugeno模型计算MPC控制器显式解
多参数二次规划是一种用于计算模型预测控制(MPC)策略固有的优化解的技术。本文提出了一个改进的Takagi-Sugeno模型来计算显式解,该模型由多面体临界区域及其各自的仿射函数组成。该技术的优点是:(1)能够降低并行处理的复杂性;(2)从数值数据中剔除模型的训练阶段;(iii)合成相关MPC控制律的单一解析表达式。实例研究表明,与传统的显式MPC优化技术相比,该方法在参数数量和处理时间方面具有更高的效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信