{"title":"The UniMelb Submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection","authors":"Andreas Scherbakov","doi":"10.18653/v1/2020.sigmorphon-1.20","DOIUrl":null,"url":null,"abstract":"The paper describes the University of Melbourne’s submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection. Our team submitted three systems in total, two neural and one non-neural. Our analysis of systems’ performance shows positive effects of newly introduced data hallucination technique that we employed in one of neural systems, especially in low-resource scenarios. A non-neural system based on observed inflection patterns shows optimistic results even in its simple implementation (>75% accuracy for 50% of languages). With possible improvement within the same modeling principle, accuracy might grow to values above 90%.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The paper describes the University of Melbourne’s submission to the SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection. Our team submitted three systems in total, two neural and one non-neural. Our analysis of systems’ performance shows positive effects of newly introduced data hallucination technique that we employed in one of neural systems, especially in low-resource scenarios. A non-neural system based on observed inflection patterns shows optimistic results even in its simple implementation (>75% accuracy for 50% of languages). With possible improvement within the same modeling principle, accuracy might grow to values above 90%.