Countdown μ-calculus

J. Kolodziejski, Bartek Klin
{"title":"Countdown μ-calculus","authors":"J. Kolodziejski, Bartek Klin","doi":"10.48550/arXiv.2208.00536","DOIUrl":null,"url":null,"abstract":"We introduce the countdown $\\mu$-calculus, an extension of the modal $\\mu$-calculus with ordinal approximations of fixpoint operators. In addition to properties definable in the classical calculus, it can express (un)boundedness properties such as the existence of arbitrarily long sequences of specific actions. The standard correspondence with parity games and automata extends to suitably defined countdown games and automata. However, unlike in the classical setting, the scalar fragment is provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple syntactic condition. We establish some facts, in particular decidability of the model checking problem and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.00536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the countdown $\mu$-calculus, an extension of the modal $\mu$-calculus with ordinal approximations of fixpoint operators. In addition to properties definable in the classical calculus, it can express (un)boundedness properties such as the existence of arbitrarily long sequences of specific actions. The standard correspondence with parity games and automata extends to suitably defined countdown games and automata. However, unlike in the classical setting, the scalar fragment is provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple syntactic condition. We establish some facts, in particular decidability of the model checking problem and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.
倒计时μ微积分
引入了倒计时微积分,它是模态微积分的一个扩展,具有不动点算子的序数逼近。除了经典微积分中可定义的性质外,它还可以表示(非)有界性性质,例如存在任意长的特定动作序列。与奇偶性博弈和自动机的标准对应关系扩展到适当定义的倒计时博弈和自动机。然而,与经典设置不同的是,标量片段可证明比全向量演算弱,并且对应于满足简单语法条件的自动机。我们建立了一些事实,特别是模型检验问题的可判定性和新算子最大允许嵌套所引起的层次结构的严格性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信