Reducing the computational complexity of a MAP post-processing algorithm for video sequences

M. Robertson, R. Stevenson
{"title":"Reducing the computational complexity of a MAP post-processing algorithm for video sequences","authors":"M. Robertson, R. Stevenson","doi":"10.1109/ICIP.1998.723503","DOIUrl":null,"url":null,"abstract":"Maximum a posteriori (MAP) filtering using the Huber-Markov (1981) random field (HMRF) image model has been shown in the past to be an effective method of reducing compression artifacts in images. Unfortunately, this MAP formulation requires iterative techniques for the solution of a constrained optimization problem. In the past, these iterative techniques have been computationally intensive, making the filter infeasible in situations where it is desired to filter images (or video frames) quickly. This paper introduces two methods for reducing the computational requirements of the constrained optimization, as well as theoretical and experimental justifications for using them.","PeriodicalId":220168,"journal":{"name":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1998.723503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Maximum a posteriori (MAP) filtering using the Huber-Markov (1981) random field (HMRF) image model has been shown in the past to be an effective method of reducing compression artifacts in images. Unfortunately, this MAP formulation requires iterative techniques for the solution of a constrained optimization problem. In the past, these iterative techniques have been computationally intensive, making the filter infeasible in situations where it is desired to filter images (or video frames) quickly. This paper introduces two methods for reducing the computational requirements of the constrained optimization, as well as theoretical and experimental justifications for using them.
降低视频序列MAP后处理算法的计算复杂度
使用Huber-Markov(1981)随机场(HMRF)图像模型的最大后验(MAP)滤波在过去已被证明是减少图像压缩伪影的有效方法。不幸的是,这种MAP公式需要迭代技术来解决约束优化问题。在过去,这些迭代技术已经计算密集,使得过滤器在需要快速过滤图像(或视频帧)的情况下不可行。本文介绍了两种减少约束优化计算量的方法,以及使用它们的理论和实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信