ECG Signal Analysis for Patient with Metabolic Syndrome based on 1D-Convolution Neural Network

Chhayly Lim, Jung-Yeon Kim, Yunyoung Nam
{"title":"ECG Signal Analysis for Patient with Metabolic Syndrome based on 1D-Convolution Neural Network","authors":"Chhayly Lim, Jung-Yeon Kim, Yunyoung Nam","doi":"10.1109/CSCI51800.2020.00134","DOIUrl":null,"url":null,"abstract":"Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with medical conditions: abdominal obesity, high blood pressure, insulin resistance, etc. People with MetS have a higher risk of cardiovascular diseases and type 2 diabetes mellitus. Hence, early detection of MetS can be useful in the field of healthcare. In this paper, we propose a 1D-Convolution Neural Network (1D-CNN) model for classifying the electrocardiogram (ECG) signals of the GBBANet online database into two classes: a group of people with the medical condition (MetS [n=15]) and a control group (CG [n=10]). The dataset consists of 5 ECG recordings per person. The proposed 1D-CNN model has achieved an overall accuracy of 88.32%.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with medical conditions: abdominal obesity, high blood pressure, insulin resistance, etc. People with MetS have a higher risk of cardiovascular diseases and type 2 diabetes mellitus. Hence, early detection of MetS can be useful in the field of healthcare. In this paper, we propose a 1D-Convolution Neural Network (1D-CNN) model for classifying the electrocardiogram (ECG) signals of the GBBANet online database into two classes: a group of people with the medical condition (MetS [n=15]) and a control group (CG [n=10]). The dataset consists of 5 ECG recordings per person. The proposed 1D-CNN model has achieved an overall accuracy of 88.32%.
基于一维卷积神经网络的代谢综合征心电信号分析
代谢综合征(MetS)是一组与腹部肥胖、高血压、胰岛素抵抗等疾病相关的代谢紊乱。患有MetS的人患心血管疾病和2型糖尿病的风险更高。因此,MetS的早期检测在医疗保健领域是有用的。在本文中,我们提出了一种1d -卷积神经网络(1D-CNN)模型,用于将GBBANet在线数据库的心电图(ECG)信号分为两类:一类是有医疗状况的人群(MetS [n=15]),另一类是对照组(CG [n=10])。该数据集由每人5次心电图记录组成。本文提出的1D-CNN模型总体准确率达到了88.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信