Autonomous Mobile Robot for Apple Plant Disease Detection based on CNN and Multi-Spectral Vision System

Pavel A. Karpyshev, V. Ilin, I. Kalinov, Alexander Petrovsky, D. Tsetserukou
{"title":"Autonomous Mobile Robot for Apple Plant Disease Detection based on CNN and Multi-Spectral Vision System","authors":"Pavel A. Karpyshev, V. Ilin, I. Kalinov, Alexander Petrovsky, D. Tsetserukou","doi":"10.1109/IEEECONF49454.2021.9382649","DOIUrl":null,"url":null,"abstract":"This paper presents an autonomous system for apple orchard inspection and early stage disease detection. Various sensors including hyperspectral, multispectral and visible range scanners are used for disease detection. For localization and obstacle detection 2D LiDARs and RTK GNSS receivers are used. The proposed system allows to minimize the use of pesticides and increase harvests. The detection approach is based on the use of neural networks for both plant segmentation and disease detection.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper presents an autonomous system for apple orchard inspection and early stage disease detection. Various sensors including hyperspectral, multispectral and visible range scanners are used for disease detection. For localization and obstacle detection 2D LiDARs and RTK GNSS receivers are used. The proposed system allows to minimize the use of pesticides and increase harvests. The detection approach is based on the use of neural networks for both plant segmentation and disease detection.
基于CNN和多光谱视觉系统的苹果植物病害自主移动机器人
本文提出了一种苹果园检测与早期病害自动检测系统。各种传感器包括高光谱、多光谱和可见范围扫描仪用于疾病检测。定位和障碍物检测使用二维激光雷达和RTK GNSS接收器。拟议的系统可以最大限度地减少农药的使用并增加收成。检测方法是基于神经网络的植物分割和病害检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信