Polyphonic pitch tracking using joint Bayesian estimation of multiple frame parameters

Paul J. Walmsley, S. Godsill, P. Rayner
{"title":"Polyphonic pitch tracking using joint Bayesian estimation of multiple frame parameters","authors":"Paul J. Walmsley, S. Godsill, P. Rayner","doi":"10.1109/ASPAA.1999.810864","DOIUrl":null,"url":null,"abstract":"We present a novel approach to pitch estimation and note detection in polyphonic audio signals. We pose the problem in a Bayesian probabilistic framework, which allows us to incorporate prior knowledge about the nature of musical data into the model. We exploit the high correlation between model parameters in adjacent frames of data by explicitly modelling the frequency variation over time using latent variables. Parameters are estimated jointly across a number of adjacent frames to increase the robustness of the estimation against transient events. Individual frames of data are modelled as the sum of harmonic sinusoids. Parameter estimation is performed using Markov chain Monte Carlo (MCMC) methods.","PeriodicalId":229733,"journal":{"name":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1999.810864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

We present a novel approach to pitch estimation and note detection in polyphonic audio signals. We pose the problem in a Bayesian probabilistic framework, which allows us to incorporate prior knowledge about the nature of musical data into the model. We exploit the high correlation between model parameters in adjacent frames of data by explicitly modelling the frequency variation over time using latent variables. Parameters are estimated jointly across a number of adjacent frames to increase the robustness of the estimation against transient events. Individual frames of data are modelled as the sum of harmonic sinusoids. Parameter estimation is performed using Markov chain Monte Carlo (MCMC) methods.
多帧参数联合贝叶斯估计的复调音高跟踪
提出了一种新的多声道音频信号的音高估计和音符检测方法。我们在贝叶斯概率框架中提出问题,这允许我们将关于音乐数据性质的先验知识纳入模型。我们利用模型参数在相邻的数据帧之间的高度相关性,通过使用潜在变量明确建模频率随时间的变化。在多个相邻帧中联合估计参数,以增加对瞬态事件估计的鲁棒性。数据的单个帧被建模为谐波正弦波的和。参数估计使用马尔可夫链蒙特卡罗(MCMC)方法执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信