Intersection Type Distributors

Federico Olimpieri
{"title":"Intersection Type Distributors","authors":"Federico Olimpieri","doi":"10.1109/LICS52264.2021.9470617","DOIUrl":null,"url":null,"abstract":"We study a family of distributors-induced bicategorical models of λ-calculus, proving that they can be syntactically presented via intersection type systems. We first introduce a class of 2-monads whose algebras are monoidal categories modelling resource management. We lift these monads to distributors and define a parametric Kleisli bicategory, giving a sufficient condition for its cartesian closure. In this framework we define a proof-relevant semantics: the interpretation of a term associates to it the set of its typing derivations in appropriate systems. We prove that our model characterize solvability, adapting reducibility techniques to our setting. We conclude by describing two examples of our construction.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We study a family of distributors-induced bicategorical models of λ-calculus, proving that they can be syntactically presented via intersection type systems. We first introduce a class of 2-monads whose algebras are monoidal categories modelling resource management. We lift these monads to distributors and define a parametric Kleisli bicategory, giving a sufficient condition for its cartesian closure. In this framework we define a proof-relevant semantics: the interpretation of a term associates to it the set of its typing derivations in appropriate systems. We prove that our model characterize solvability, adapting reducibility techniques to our setting. We conclude by describing two examples of our construction.
交集型分配器
研究了λ-微积分的一类分配器诱导的双范畴模型,证明了它们可以通过交型系统在句法上表示。我们首先引入一类2-单元,它们的代数是一元范畴,用来建模资源管理。我们将这些单子提升到分布,并定义了一个参数Kleisli双范畴,给出了其笛卡尔闭包的充分条件。在这个框架中,我们定义了一个证明相关语义:术语的解释与它在适当系统中的类型化派生集相关联。我们证明了我们的模型具有可解性特征,使可约性技术适应于我们的设置。我们通过描述我们的构造的两个例子来结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信