Overview of reactor pressure vessel cladding

F. Gillemot
{"title":"Overview of reactor pressure vessel cladding","authors":"F. Gillemot","doi":"10.1504/IJNKM.2010.037070","DOIUrl":null,"url":null,"abstract":"Licence extension of NPPs requires a new safety analysis of the plant covering the extended operating life. One of the most important safety considerations is the integrity of the RPV (Reactor Pressure Vessels). The RPV material suffers several ageing-related effects during operating service: neutron (and gamma) irradiation embrittlement, thermal ageing, low-cycle fatigue, thermal fatigue and corrosion. Generally, the most severe effects are irradiation and the thermal embrittlement of the RPV belt near the fuel core zone, which is often referred to as the beltline. Nearly all operating RPVs are covered inside with a stainless steel layer called RPV cladding. The RPV cladding generally made by welding results in very rough grain size and its mechanical and thermal properties are different from the RPV base material, causing high residual stresses. The thickness of RPV cladding is 2?10 mm. Since the RPV cladding was previously considered only as an anticorrosive layer the mechanical properties and the role in the RPV integrity were not properly studied. In this review, the existing relevant informations on RPV cladding properties are summarised.","PeriodicalId":188437,"journal":{"name":"International Journal of Nuclear Knowledge Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNKM.2010.037070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Licence extension of NPPs requires a new safety analysis of the plant covering the extended operating life. One of the most important safety considerations is the integrity of the RPV (Reactor Pressure Vessels). The RPV material suffers several ageing-related effects during operating service: neutron (and gamma) irradiation embrittlement, thermal ageing, low-cycle fatigue, thermal fatigue and corrosion. Generally, the most severe effects are irradiation and the thermal embrittlement of the RPV belt near the fuel core zone, which is often referred to as the beltline. Nearly all operating RPVs are covered inside with a stainless steel layer called RPV cladding. The RPV cladding generally made by welding results in very rough grain size and its mechanical and thermal properties are different from the RPV base material, causing high residual stresses. The thickness of RPV cladding is 2?10 mm. Since the RPV cladding was previously considered only as an anticorrosive layer the mechanical properties and the role in the RPV integrity were not properly studied. In this review, the existing relevant informations on RPV cladding properties are summarised.
反应堆压力容器包壳概述
核电站的许可证延期需要对延长的运行寿命进行新的安全分析。最重要的安全考虑之一是RPV(反应堆压力容器)的完整性。RPV材料在运行过程中会受到几种与老化相关的影响:中子(和伽马)辐照脆化、热老化、低周疲劳、热疲劳和腐蚀。一般来说,最严重的影响是辐照和燃料核心区附近的RPV带的热脆,这通常被称为腰带。几乎所有正在运行的RPV内部都覆盖着一层称为RPV包层的不锈钢层。通常采用焊接方法制备的RPV熔覆层晶粒尺寸非常粗糙,其力学和热性能与RPV基材不同,导致残余应力高。RPV包层厚度为2?10毫米。由于RPV包层以前只被认为是一种防腐层,因此没有对RPV包层的力学性能及其在RPV完整性中的作用进行适当的研究。本文对RPV包层性能的相关研究进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信