Image Denoising Using Edge Model-based Representation of Laplacian Subbands

M. Nema, S. Rakshit, S. Chaudhuri
{"title":"Image Denoising Using Edge Model-based Representation of Laplacian Subbands","authors":"M. Nema, S. Rakshit, S. Chaudhuri","doi":"10.1109/ICAPR.2009.29","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method of removing unstructured, spurious artifacts (more popularly called noise) from images. This method uses an edge model-based representation of Laplacian subbands and deals with noise at Laplacian subband levels to reduce it effectively. As the prominent edges are retained in their original form in the denoised images, the proposed method can be classified as an edge preserving denoising scheme. Laplacian subbands are represented using a Primitive Set (PS) consisting of 7 x 7 subimages of sharp and blurred Laplacian edge elements. The choice of edge model-based representation provides greater flexibility in removing characteristic artifacts from noise sources.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel method of removing unstructured, spurious artifacts (more popularly called noise) from images. This method uses an edge model-based representation of Laplacian subbands and deals with noise at Laplacian subband levels to reduce it effectively. As the prominent edges are retained in their original form in the denoised images, the proposed method can be classified as an edge preserving denoising scheme. Laplacian subbands are represented using a Primitive Set (PS) consisting of 7 x 7 subimages of sharp and blurred Laplacian edge elements. The choice of edge model-based representation provides greater flexibility in removing characteristic artifacts from noise sources.
基于拉普拉斯子带表示的边缘模型图像去噪
本文提出了一种从图像中去除非结构化、虚假伪影(更通俗地称为噪声)的新方法。该方法采用基于边缘模型的拉普拉斯子带表示,并在拉普拉斯子带水平上处理噪声,有效地降低了噪声。由于去噪后图像中突出的边缘保持了原来的形状,因此该方法可以归类为一种边缘保持去噪方案。拉普拉斯子带使用一个原始集(PS)表示,该原始集由7 × 7个子图像组成,这些子图像由锐利和模糊的拉普拉斯边缘元素组成。选择基于边缘模型的表示在从噪声源中去除特征伪影方面提供了更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信