EagleEye: A Novel Visual Anomaly Detection Method

Iman Sharafaldin, A. Ghorbani
{"title":"EagleEye: A Novel Visual Anomaly Detection Method","authors":"Iman Sharafaldin, A. Ghorbani","doi":"10.1109/PST.2018.8514179","DOIUrl":null,"url":null,"abstract":"We propose a novel visualization technique (Eagle-Eye) for intrusion detection, which visualizes a host as a commu- nity of system call traces in two-dimensional space. The goal of EagleEye is to visually cluster the system call traces. Although human eyes can easily perceive anomalies using EagleEye view, we propose two different methods called SAM and CPM that use the concept of data depth to help administrators distinguish between normal and abnormal behaviors. Our experimental results conducted on Australian Defence Force Academy Linux Dataset (ADFA-LD), which is a modern system calls dataset that includes new exploits and attacks on various programs, show EagleEye's efficiency in detecting diverse exploits and attacks.","PeriodicalId":265506,"journal":{"name":"2018 16th Annual Conference on Privacy, Security and Trust (PST)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th Annual Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST.2018.8514179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel visualization technique (Eagle-Eye) for intrusion detection, which visualizes a host as a commu- nity of system call traces in two-dimensional space. The goal of EagleEye is to visually cluster the system call traces. Although human eyes can easily perceive anomalies using EagleEye view, we propose two different methods called SAM and CPM that use the concept of data depth to help administrators distinguish between normal and abnormal behaviors. Our experimental results conducted on Australian Defence Force Academy Linux Dataset (ADFA-LD), which is a modern system calls dataset that includes new exploits and attacks on various programs, show EagleEye's efficiency in detecting diverse exploits and attacks.
鹰眼:一种新的视觉异常检测方法
本文提出了一种新的入侵检测可视化技术——鹰眼(Eagle-Eye),该技术将主机可视化为二维空间中的系统调用轨迹共同体。EagleEye的目标是可视化地对系统调用轨迹进行聚类。虽然人眼可以使用EagleEye视图轻松地感知异常,但我们提出了两种不同的方法,称为SAM和CPM,它们使用数据深度的概念来帮助管理员区分正常和异常行为。我们在澳大利亚国防军学院Linux数据集(ADFA-LD)上进行的实验结果显示,EagleEye在检测各种漏洞和攻击方面效率高,这是一个现代系统调用数据集,包括对各种程序的新漏洞和攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信