{"title":"Integrated Remote Sensing and GIS Analysis for Landslide Susceptibility Assessment along the Trenggalek–Ponorogo Road, East Java Province, Indonesia","authors":"A. S. Banuzaki, Adelia Kusuma Ayu","doi":"10.51835/iagij.2021.1.1.14","DOIUrl":null,"url":null,"abstract":"Landslide, the second most common hazard in Indonesia, after an earthquake, is causing enormous losses of public infrastructures with subsequent economic disruptions. Roads are the most frequent public property which is affected by landslides. Due to the geomorphological condition of Indonesia, the construction of roads often intersects the mountainous topography. The Trenggalek–Ponorogo Road is one of the roads passing through mountainous terrains that are very susceptible affected by landslides. The road has an important role as the main transportation connector of some regencies in East Java Province. Landslide mitigation strategies along the Trenggalek–Ponorogo Road are needed to prevent enormous losses. This research was aimed to conduct a remote sensing-based assessment of landslide susceptibility areas along the Trenggalek–Ponorogo Road. The landslide susceptibility areas were assessed by considering landslide triggering parameters; those were topographic slope, distance to geological structure, distance to stream, lithology, and land use/land cover. The landslide triggering parameters were presented in spatial data and processed using Geographic Information System (GIS) technology. The Analytical Hierarchy Process (AHP) method was applied to integrate the landslide triggering parameters which have the degree of effect to determine Landslide Potential Index (LPI). The resulting LPI delineated the area into four susceptibility zones: very high, high, moderate, and low, which were presented as landslide susceptibility map. The susceptibility map was then validated by landslide occurrences inventory in the study area. The very high susceptibility zones, which are strongly predicted affecting the Trenggalek–Ponorogo Road, are located in Nglinggis and Grogol Village.","PeriodicalId":152002,"journal":{"name":"Indonesian Association of Geologists Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Association of Geologists Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51835/iagij.2021.1.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Landslide, the second most common hazard in Indonesia, after an earthquake, is causing enormous losses of public infrastructures with subsequent economic disruptions. Roads are the most frequent public property which is affected by landslides. Due to the geomorphological condition of Indonesia, the construction of roads often intersects the mountainous topography. The Trenggalek–Ponorogo Road is one of the roads passing through mountainous terrains that are very susceptible affected by landslides. The road has an important role as the main transportation connector of some regencies in East Java Province. Landslide mitigation strategies along the Trenggalek–Ponorogo Road are needed to prevent enormous losses. This research was aimed to conduct a remote sensing-based assessment of landslide susceptibility areas along the Trenggalek–Ponorogo Road. The landslide susceptibility areas were assessed by considering landslide triggering parameters; those were topographic slope, distance to geological structure, distance to stream, lithology, and land use/land cover. The landslide triggering parameters were presented in spatial data and processed using Geographic Information System (GIS) technology. The Analytical Hierarchy Process (AHP) method was applied to integrate the landslide triggering parameters which have the degree of effect to determine Landslide Potential Index (LPI). The resulting LPI delineated the area into four susceptibility zones: very high, high, moderate, and low, which were presented as landslide susceptibility map. The susceptibility map was then validated by landslide occurrences inventory in the study area. The very high susceptibility zones, which are strongly predicted affecting the Trenggalek–Ponorogo Road, are located in Nglinggis and Grogol Village.