Yajun Yang, Bing Chen, Shaokang Meng, Shuaiyi Li, Xiaonan Yang
{"title":"Electrical and viscoelastic measurement of cancer cells in epithelial-mesenchymal transition process on a microfluidic device","authors":"Yajun Yang, Bing Chen, Shaokang Meng, Shuaiyi Li, Xiaonan Yang","doi":"10.1109/ISNE.2019.8896395","DOIUrl":null,"url":null,"abstract":"Microfluidic devices and electrical techniques based on electrical impedance and viscoelastic changes can be used in the measurement of cancer cells in the epithelial-mesenchymal transition (EMT) process. Electrical impedance and transmission time were investigated when a single CRC cell passed the measurable tiny channel which was designed with width smaller than the average diameter of a single cell. The experimental data showed that the electrical impedance characteristics and viscoelasticity of the cells were changed after PMA induction. This property is expected to become a new biomarker for studying EMT.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Microfluidic devices and electrical techniques based on electrical impedance and viscoelastic changes can be used in the measurement of cancer cells in the epithelial-mesenchymal transition (EMT) process. Electrical impedance and transmission time were investigated when a single CRC cell passed the measurable tiny channel which was designed with width smaller than the average diameter of a single cell. The experimental data showed that the electrical impedance characteristics and viscoelasticity of the cells were changed after PMA induction. This property is expected to become a new biomarker for studying EMT.