An Extension For The RA Methodology: Stability Analysis

E. V. Brazil, Reinaldo Silva, L. Farias
{"title":"An Extension For The RA Methodology: Stability Analysis","authors":"E. V. Brazil, Reinaldo Silva, L. Farias","doi":"10.3997/2214-4609.201803029","DOIUrl":null,"url":null,"abstract":"We present an extension for a methodology proposed by Perez-Valiente et al (2014), known as Reservoirs Analogues (RA). This method finds analogues using machine learning to complete a dataset. Our concern is this methodology does not track error carried from the imputation of missing values until ranking lists of analogues. This study aims to analyze the inherent uncertainty of this step discussing how it can be beneficial to obtain accurate information for reservoirs with limited information.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an extension for a methodology proposed by Perez-Valiente et al (2014), known as Reservoirs Analogues (RA). This method finds analogues using machine learning to complete a dataset. Our concern is this methodology does not track error carried from the imputation of missing values until ranking lists of analogues. This study aims to analyze the inherent uncertainty of this step discussing how it can be beneficial to obtain accurate information for reservoirs with limited information.
RA方法的扩展:稳定性分析
我们对Perez-Valiente等人(2014)提出的方法进行了扩展,称为油藏类似物(RA)。该方法使用机器学习来完成数据集。我们担心的是,这种方法不能跟踪从缺失值的推算到类似物的排名列表所带来的错误。本研究旨在分析该步骤的固有不确定性,讨论如何在信息有限的情况下有利于获得准确的油藏信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信