{"title":"Series","authors":"V. Eiderman","doi":"10.1142/9789811221644_0006","DOIUrl":null,"url":null,"abstract":"Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvátal-Gomory inequalities obtained by strengthening Chvátal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvátal-Gomory inequalities is also a rational polyhedron. This generalizes a result of Dunkel and Schulz on 0–1 problems to the case when some of the variables have upper or lower bounds or both while the rest of them are unbounded","PeriodicalId":249188,"journal":{"name":"An Introduction to Complex Analysis and the Laplace Transform","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Complex Analysis and the Laplace Transform","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811221644_0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvátal-Gomory inequalities obtained by strengthening Chvátal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvátal-Gomory inequalities is also a rational polyhedron. This generalizes a result of Dunkel and Schulz on 0–1 problems to the case when some of the variables have upper or lower bounds or both while the rest of them are unbounded