Series

V. Eiderman
{"title":"Series","authors":"V. Eiderman","doi":"10.1142/9789811221644_0006","DOIUrl":null,"url":null,"abstract":"Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvátal-Gomory inequalities obtained by strengthening Chvátal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvátal-Gomory inequalities is also a rational polyhedron. This generalizes a result of Dunkel and Schulz on 0–1 problems to the case when some of the variables have upper or lower bounds or both while the rest of them are unbounded","PeriodicalId":249188,"journal":{"name":"An Introduction to Complex Analysis and the Laplace Transform","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Complex Analysis and the Laplace Transform","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811221644_0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvátal-Gomory inequalities obtained by strengthening Chvátal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvátal-Gomory inequalities is also a rational polyhedron. This generalizes a result of Dunkel and Schulz on 0–1 problems to the case when some of the variables have upper or lower bounds or both while the rest of them are unbounded
系列
在实践中出现的整数规划问题通常涉及具有单侧边界或双侧边界的决策变量。本文考虑了利用变量上的界加强Chvátal-Gomory不等式得到的Chvátal-Gomory不等式的推广。证明了应用广义Chvátal-Gomory不等式得到的有理多面体的闭包也是有理多面体。这将Dunkel和Schulz关于0-1问题的结果推广到一些变量有上界或下界或两者都有而其他变量无界的情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信