A Deep Learning-Based Methodology for Rapidly Detecting the Defects inside Tree Trunks via GPR

Qiqi Dai, B. Wen, Y. Lee, A. Yucel, Genevieve Ow, Mohamed Lokman Mohd Yusof
{"title":"A Deep Learning-Based Methodology for Rapidly Detecting the Defects inside Tree Trunks via GPR","authors":"Qiqi Dai, B. Wen, Y. Lee, A. Yucel, Genevieve Ow, Mohamed Lokman Mohd Yusof","doi":"10.23919/USNC/URSI49741.2020.9321692","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep learning-based approach for rapidly detecting the defects inside tree trunks via ground penetrating radar (GPR) technology. In this approach, GPR measurements are performed centimeters-away from the surface of tree trunk on a straight trajectory. The n the B-scans obtained from GPR measurements are processed via a deep learning algorithm to detect the defects inside the tree trunks, classify their types, and estimate their sizes/severities. An open-source finite-difference time-domain (FDTD) simulator is used to produce a large set of B-scans from random realizations of realistic 2D tree trunk cross-sections without and with different size of defects (cavities, decays, and cracks). The data set is then used to train and test a six-layer convolutional neural network (CNN) with drop-out layers and weight regularization to avoid overfitting. Our preliminary results show that the testing accuracy of the CNN algorithm is more than 90%. The testing results demonstrate that the current methodology al lows accurately detecting the types and sizes of defects inside tree trunks to monitor the health condition of trees.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a deep learning-based approach for rapidly detecting the defects inside tree trunks via ground penetrating radar (GPR) technology. In this approach, GPR measurements are performed centimeters-away from the surface of tree trunk on a straight trajectory. The n the B-scans obtained from GPR measurements are processed via a deep learning algorithm to detect the defects inside the tree trunks, classify their types, and estimate their sizes/severities. An open-source finite-difference time-domain (FDTD) simulator is used to produce a large set of B-scans from random realizations of realistic 2D tree trunk cross-sections without and with different size of defects (cavities, decays, and cracks). The data set is then used to train and test a six-layer convolutional neural network (CNN) with drop-out layers and weight regularization to avoid overfitting. Our preliminary results show that the testing accuracy of the CNN algorithm is more than 90%. The testing results demonstrate that the current methodology al lows accurately detecting the types and sizes of defects inside tree trunks to monitor the health condition of trees.
基于深度学习的GPR树干内部缺陷快速检测方法
提出了一种基于深度学习的探地雷达快速检测树干内部缺陷的方法。在这种方法中,探地雷达测量是在距离树干表面厘米的直线轨道上进行的。通过深度学习算法对GPR测量获得的b扫描进行处理,以检测树干内部的缺陷,分类它们的类型,并估计它们的大小/严重程度。一个开源的时域有限差分(FDTD)模拟器被用来产生大量的b扫描从随机实现的真实的二维树干横截面没有和不同大小的缺陷(空洞,衰变,和裂缝)。然后使用该数据集训练和测试一个六层卷积神经网络(CNN),该网络具有dropout层和权值正则化以避免过拟合。我们的初步结果表明,CNN算法的测试准确率在90%以上。试验结果表明,目前的方法不能准确地检测出树干内部缺陷的类型和大小,以监测树木的健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信