JPEG anti-forensics using non-parametric DCT quantization noise estimation and natural image statistics

Wei Fan, K. Wang, François Cayre, Z. Xiong
{"title":"JPEG anti-forensics using non-parametric DCT quantization noise estimation and natural image statistics","authors":"Wei Fan, K. Wang, François Cayre, Z. Xiong","doi":"10.1145/2482513.2482536","DOIUrl":null,"url":null,"abstract":"This paper proposes an anti-forensic method that disguises the footprints left by JPEG compression, whose objective is to fool existing JPEG forensic detectors while keeping a high visual quality of the processed image. First we examine the reliability of existing detectors and point out the potential vulnerability of the quantization table estimation based detector. Then we construct a new, non-parametric method to DCT histogram smoothing without any histogram statistical model. Finally JPEG forensic detectors are fooled by optimizing an objective function considering both the anti-forensic terms and a natural image statistical model. We show that compared to the state-of-the-art methods the proposed JPEG anti-forensic method is able to achieve a higher image visual quality while being undetectable under existing detectors.","PeriodicalId":243756,"journal":{"name":"Information Hiding and Multimedia Security Workshop","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Hiding and Multimedia Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482513.2482536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper proposes an anti-forensic method that disguises the footprints left by JPEG compression, whose objective is to fool existing JPEG forensic detectors while keeping a high visual quality of the processed image. First we examine the reliability of existing detectors and point out the potential vulnerability of the quantization table estimation based detector. Then we construct a new, non-parametric method to DCT histogram smoothing without any histogram statistical model. Finally JPEG forensic detectors are fooled by optimizing an objective function considering both the anti-forensic terms and a natural image statistical model. We show that compared to the state-of-the-art methods the proposed JPEG anti-forensic method is able to achieve a higher image visual quality while being undetectable under existing detectors.
JPEG反取证采用非参数DCT量化噪声估计和自然图像统计
本文提出了一种伪装JPEG压缩留下的足迹的反取证方法,其目的是欺骗现有的JPEG取证检测器,同时保持处理后图像的高视觉质量。首先对现有检测器的可靠性进行了分析,指出了基于量化表估计的检测器的潜在漏洞。然后,我们构造了一种新的无参数的DCT直方图平滑方法,无需任何直方图统计模型。最后,通过优化目标函数同时考虑反取证术语和自然图像统计模型来欺骗JPEG取证检测器。我们表明,与最先进的方法相比,所提出的JPEG反取证方法能够实现更高的图像视觉质量,同时在现有检测器下无法检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信