SSD Target Detection Algorithm Based on Multi-Scale Fusion and Attention

Chengyang Jin, Lei Li, Mengting Li, Yijian Pei
{"title":"SSD Target Detection Algorithm Based on Multi-Scale Fusion and Attention","authors":"Chengyang Jin, Lei Li, Mengting Li, Yijian Pei","doi":"10.1145/3487075.3487087","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of weak effective information in feature maps and high miss-detection rate of difficult targets when traditional SSD target detection algorithms perform target detection, we propose an improved SSD target detection algorithm. First, add a CBAM module after each feature layer of the SSD. CBAM is a hybrid module that combines spatial attention and channel attention. This module strengthens the network's ability to discriminate targets and backgrounds, improves the expression of effective feature weights, and suppresses interference from irrelevant information; then, adopt the idea of FPN to construct a feature fusion module, which effectively integrates feature layers of different scales, thereby improving the network's ability to detect difficult targets. Verifying the method proposed in this paper on the PASCAL VOC data set fully proves that the improved network performance has been greatly improved.","PeriodicalId":354966,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487075.3487087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of weak effective information in feature maps and high miss-detection rate of difficult targets when traditional SSD target detection algorithms perform target detection, we propose an improved SSD target detection algorithm. First, add a CBAM module after each feature layer of the SSD. CBAM is a hybrid module that combines spatial attention and channel attention. This module strengthens the network's ability to discriminate targets and backgrounds, improves the expression of effective feature weights, and suppresses interference from irrelevant information; then, adopt the idea of FPN to construct a feature fusion module, which effectively integrates feature layers of different scales, thereby improving the network's ability to detect difficult targets. Verifying the method proposed in this paper on the PASCAL VOC data set fully proves that the improved network performance has been greatly improved.
基于多尺度融合和关注的SSD目标检测算法
针对传统SSD目标检测算法在进行目标检测时存在特征图有效信息弱、难目标漏检率高的问题,提出了一种改进的SSD目标检测算法。首先,在SSD硬盘的每个特性层后面添加一个CBAM模块。CBAM是一个结合空间注意和通道注意的混合模块。该模块增强了网络对目标和背景的区分能力,改进了有效特征权值的表达,抑制了无关信息的干扰;然后,采用FPN的思想构建特征融合模块,有效地集成了不同尺度的特征层,从而提高了网络对困难目标的检测能力。在PASCAL VOC数据集上对本文提出的方法进行验证,充分证明改进后的网络性能有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信