Neural Modelling of Magnetic Materials for Aircraft Power Converters Simulations

E. Cardelli, Antonino Laudani, G. Lozito, Valentina Lucaferri, A. Salvini, S. Q. Antonio, F. Riganti Fulginei
{"title":"Neural Modelling of Magnetic Materials for Aircraft Power Converters Simulations","authors":"E. Cardelli, Antonino Laudani, G. Lozito, Valentina Lucaferri, A. Salvini, S. Q. Antonio, F. Riganti Fulginei","doi":"10.1109/MELECON48756.2020.9140623","DOIUrl":null,"url":null,"abstract":"Power converters often features inductive devices in their architectures. Accurate simulation of the converters requires a well-defined response of the magnetic cores. A computationally efficient approach for the numerical modelling of hysteretic magnetic materials is presented in this work. The approach exploits the simplicity of the identification procedure for the Preisach model of hysteresis and the reduced computational costs of Neural Networks. The model for hysteresis is implemented both in direct and inverse form. Validation is performed against independent dataset, with evident computational speedup, which can be a valuable asset for magnetic cores simulations in the design of complex power systems featuring multiple converters such as the ones used in avionic applications.","PeriodicalId":268311,"journal":{"name":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON48756.2020.9140623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power converters often features inductive devices in their architectures. Accurate simulation of the converters requires a well-defined response of the magnetic cores. A computationally efficient approach for the numerical modelling of hysteretic magnetic materials is presented in this work. The approach exploits the simplicity of the identification procedure for the Preisach model of hysteresis and the reduced computational costs of Neural Networks. The model for hysteresis is implemented both in direct and inverse form. Validation is performed against independent dataset, with evident computational speedup, which can be a valuable asset for magnetic cores simulations in the design of complex power systems featuring multiple converters such as the ones used in avionic applications.
飞机电源变换器仿真中磁性材料的神经网络建模
功率变换器在其结构中通常具有电感器件。对变换器进行精确的仿真需要对磁芯的响应有一个明确的定义。本文提出了一种计算效率高的磁滞材料数值模拟方法。该方法利用了滞回Preisach模型识别过程的简单性和降低了神经网络的计算成本。迟滞模型有正反两种实现形式。验证是针对独立的数据集进行的,具有明显的计算加速,这对于设计具有多个转换器(如航空电子应用中使用的转换器)的复杂电源系统中的磁芯模拟来说是有价值的资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信