{"title":"Retrieving Diverse Opinions from App Reviews","authors":"Emitzá Guzmán, Omar Aly, B. Brügge","doi":"10.1109/ESEM.2015.7321214","DOIUrl":null,"url":null,"abstract":"Context: Users can have conflicting opinions and different experiences when using software and user reviews serve as a channel in which users can document their opinions and experiences. To develop and evolve software that is usable and relevant for a diverse group of users, different opinions and experiences need to be taken into account. Goal: In this paper we present DIVERSE, a feature and sentiment centric retrieval approach which automatically provides developers with a diverse sample of user reviews that is representative of the different opinions and experiences mentioned in the whole set of reviews. Results: We evaluated the diversity retrieval performance of our approach on reviews from seven apps from two different app stores. We compared the reviews retrieved by DIVERSE with a feature-based retrieval approach and found that on average DIVERSE outperforms the baseline approach. Additionally, a controlled experiment revealed that DIVERSE can help develop- ers save time when analyzing user reviews and was considered useful for detecting conflicting opinions and software evolution. Conclusions: DIVERSE can therefore help developers collect a comprehensive set of reviews and aid in the detection of conflicting opinions.","PeriodicalId":258843,"journal":{"name":"2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2015.7321214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Context: Users can have conflicting opinions and different experiences when using software and user reviews serve as a channel in which users can document their opinions and experiences. To develop and evolve software that is usable and relevant for a diverse group of users, different opinions and experiences need to be taken into account. Goal: In this paper we present DIVERSE, a feature and sentiment centric retrieval approach which automatically provides developers with a diverse sample of user reviews that is representative of the different opinions and experiences mentioned in the whole set of reviews. Results: We evaluated the diversity retrieval performance of our approach on reviews from seven apps from two different app stores. We compared the reviews retrieved by DIVERSE with a feature-based retrieval approach and found that on average DIVERSE outperforms the baseline approach. Additionally, a controlled experiment revealed that DIVERSE can help develop- ers save time when analyzing user reviews and was considered useful for detecting conflicting opinions and software evolution. Conclusions: DIVERSE can therefore help developers collect a comprehensive set of reviews and aid in the detection of conflicting opinions.